scholarly journals miRNA-331-3p Affects The Proliferation, Metastasis And Invasion of Osteosarcoma Through SOCS1/JAK2/STAT3

Author(s):  
Dan Zu ◽  
Qi Dong ◽  
Sunfang Chen ◽  
Yongde Chen ◽  
Jun Yao ◽  
...  

Abstract Background: MicroRNAs (miRNA) are regulatory small noncoding RNAs, which play a key role in many cancers. It has been found that miR-331-3p is involved in the development and progression of various cancers, but there are few reports in osteosarcoma. Methods: The public GEO database was used to analyze the survival difference of miR-331-3p in OS organizations. The level of cell proliferation assay was assessed by CCK-8 and colony formation. Tanswell and Wound-healing detect the transfer and invasion ability of miR-331-3p in OS. TargetScan, miRDBmiR, TarBase, and dual luciferase reporter gene assays were used to determine SOCS1 as a targeted regulator. Western blot and immunohistochemistry were used to detect the expression of protein levels. A mouse model of subcutaneously transplantable tumors is used to evaluate the proliferation of OS in vivo.Results: The low expression of miR-331-3p is negatively correlated with the overall survival of OS patients. Overexpression of miR-331-3p significantly inhibited cell proliferation, metastasis and invasion. miR-331-3p affects the occurrence and development of osteosarcoma by targeting the SOCS1/JAK2/STAT3 signaling pathway.Conclusion: miR-331-3p reduces the expression of SOCS1 by combining with its 3'UTR, thereby activating the JAK2/STAT3 signaling pathway to regulate the progression of OS.

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haozi Huang ◽  
Guowei Zhang ◽  
Zhenying Ge

Long noncoding RNA (lncRNAs) metastasis–associated lung adenocarcinoma transcript 1 (MALAT1) has been reported in diabetic nephropathy (DN) about its effect on podocyte function and cell heat shock induced by hyperglycemia. However, the biological mechanism of MALAT1 regulating DN fibrosis needs further study. In this study, SD rats were administrated with streptozotocin (STZ) to establish a diabetes model. In vitro, human renal tubular epithelial cells (HK-2 and 293T) were treated with high glucose (HG). Here, we found that MALAT1 was upregulated in renal tissues of diabetic rats and HG-treated cells, and HG treatment promoted cell proliferation and invasion. MALAT1 overexpression aggravated protein levels of collagen I (col I), collagen IV (col IV), fibronectin (FN), and laminin (LN) in HK-2 cells, while MALAT1 knockdown exerted the opposite effect. Moreover, the luciferase reporter gene and pull-down assays demonstrated that MALAT1 interacted with miR-2355-3p. The miR-2355-3p level was downregulated in diabetic rats and HG-treated cells, and MALAT1 overexpression inhibited the miR-2355-3p level. Bioinformatics prediction and luciferase reporter gene assay revealed that interleukin 6 signal transducer (IL6ST) was a target of miR-2355-3p. In addition, miR-2355-3p overexpression attenuated fibrosis-related gene levels in HG-treated cells by inhibiting IL6ST expression and inactivating the recombinant signal transducer and activator of the transcription 3 (STAT3) signaling pathway. Knockdown of miR-2355-3p reversed the inhibitory effect of MALAT1 knockdown on IL6ST, col I, col IV, FN, and LN protein levels in HG-induced cells. Overexpression of MALAT1 aggravated cell damage in HG-induced cells via the miR-2355-3p/IL6ST/STAT3 signaling pathway. Finally, enhanced renal fibrosis and kidney tissue damage were observed in diabetic rats. In conclusion, MALAT1 overexpression may enhance renal fibrosis in diabetic rats and cell damage in HG-induced HK-2 cells via the miR-2355-3p/IL6ST axis, which provides a new perspective of DN treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jia Yang ◽  
Jiaojiao Zhou ◽  
Xin Wang ◽  
Ling Ji ◽  
Siwen Wang ◽  
...  

The aim of the present study was to investigate the effect of erythropoietin (EPO) on contrast-induced nephrology (CIN) in vivo and in vitro. Male C57BL/6J mice were divided into four groups: control, CIN (iohexol 6.0 g/kg), EPO (3,000 IU/kg), and CIN+EPO. Hematoxylin and eosin (H&E) staining and biochemical index analyses were performed to evaluate renal injury. The cellular proliferation rate was detected using the Cell Counting Kit-8 (CCK-8) assay. In addition, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometric assay were used to assess the apoptosis of tissue and cells, respectively. Renal protein expression associated with apoptosis, pyroptosis, and signaling pathways was determined by Western blot (WB) assays for tissues and cells. The results showed that EPO significantly decreased serum creatinine, blood urea nitrogen, and cystatin C levels and alleviated renal histological changes in vivo. The protein levels of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway components were overexpressed in the EPO treatment group. Furthermore, EPO suppressed the cell apoptosis and pyroptosis; decreased the protein levels of cleaved caspase-3, Bax, gasdermin D (GSDMD), and caspase-1; and enhanced the expression of Bcl-2. In summary, EPO could exert renoprotective effect by activating the JAK2/STAT3 signaling pathway, which may be a novel potential therapy for the treatment of CIN in the clinic.


2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Xiang Li ◽  
Yu Xie ◽  
An Kang ◽  
Yue Wang

Rheumatoid arthritis (RA) is featured by a variety of physical symptoms and fibroblast-like synoviocytes (FLSs) abnormal proliferation. Increasing evidence has demonstrated that traditional Chinese medicine exerts an important role in RA treatment. New bitongling (NBTL) as one of the traditional Chinese medicine has been reported to be involved in the progression of RA, but the exact mechanism is unclear. In our study, we intended to investigate the effect of NBTL on RA to identify the mechanisms related to JAK2/STAT3 signaling pathway. Extracts of Tripterygium wilfordii (TW), a traditional Chinese herbal medicine, have been widely used for treating RA in China for several decades, so, TW was used as a positive control drug for TBNL. RA rats were constructed by immunization with collagen type II to evaluate the action of NBTL in vivo. Body weight and arthritic index were evaluated. Hematoxylin and Eosin staining was performed to analysis the morphological changes of ankle joints tissue. TUNEL and flow cytometry were performed to examine cell apoptosis, while CCK8 and Ethynyl-2′-deoxyuridine (EdU) were performed to examine cell proliferation. In addition, the markers of inflammation were detected by Western blot, ELISA, and RT-qPCR. Firstly, we find that rats treated with NBTL or TW not only reduced swelling degree and bone destruction, but also repressed IL-1 β and IL-6 levels. In addition, NBTL and TW could increase the weight of rats, and promote the level of IL-10 and IL-4 in vivo. Furthermore, NBTL inhibited inflammation of FLS, induced cell apoptosis and hindered cell proliferation, which was reversed by dipeptidyl peptidase (DPP), a JAK2/STAT3 pathway activator. Taken together, NBTL potentially retarded RA via JAK2/STAT3 pathway, highlighting novel mechanisms associated with RA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


Author(s):  
Zhongwei Zhao ◽  
Jingjing Song ◽  
Bufu Tang ◽  
Shiji Fang ◽  
Dengke Zhang ◽  
...  

Abstract Background Emerging evidence suggests that circular RNAs play critical roles in disease development especially in cancers. Previous genome-wide RNA-seq studies found that a circular RNA derived from SOD2 gene was highly upregulated in hepatocellular carcinoma (HCC), however, the role of circSOD2 in HCC remains largely unknown. Methods The expression profiling of circSOD2 and microRNA in HCC patients were assessed by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). SiRNA or CRISPR-CAS9 were used to silence gene expression. The biological function of circSOD2 in HCC was investigated using in vitro and in vivo studies including, trans-well cell migration, cell apoptosis, cell cycle, CCK8, siRNA interference, western blots, and xenograft mouse model. The underlying molecular mechanism was determined by Chromatin Immunoprecipitation quantitative real time PCR (ChIP-qPCR), bioinformatic analysis, biotin-pull down, RNA immunoprecipitation, 5-mc DNA pulldown and luciferase assays. Results In accordance with previous sequencing results, here, we demonstrated that circSOD2 was highly expressed in HCC tumor tissues compared with normal liver tissues. Mechanically, we showed that histone writer EP300 and WDR5 bind to circSOD2 promoter and trigger its promoter H3K27ac and H3K4me3 modification, respectively, which further activates circSOD2 expression. SiRNA mediated circSOD2 suppression impaired liver cancer cell growth, cell migration, prohibited cell cycle progression and in vivo tumor growth. By acting as a sponge, circSOD2 inhibits miR-502-5p expression and rescues miR-502-5p target gene DNMT3a expression. As a DNA methyltransferase, upregulated DNMA3a suppresses SOCS3 expression by increasing SOCS3 promoter DNA methylation. This event further accelerates SOCS3 downstream JAK2/STAT3 signaling pathway activation. In addition, we also found that activated STAT3 regulates circSOD2 expression in a feedback way. Conclusion The novel signaling axis circSOD2/miR-502-5p/DNMT3a/JAK2/STAT3/circSOD2 provides a better understanding of HCC tumorigenesis. The molecular mechanism underlying this signaling axis offers new prevention and treatment of HCC.


2021 ◽  
Vol 17 (73) ◽  
pp. 45
Author(s):  
Juandong Wang ◽  
Ai Li ◽  
Li Zhang ◽  
VishnuPriya Veeraraghavan ◽  
SurapaneniKrishna Mohan

2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2021 ◽  
Vol 17 (9) ◽  
pp. 1882-1889
Author(s):  
Suqin Wang ◽  
Lina Xu ◽  
Zhiqiang Zhang ◽  
Ping Wang ◽  
Rong Zhang ◽  
...  

Dysregulation expression of miR-375 is noted to correlate with progression of cervical cancer. This study attempted to investigate the impact of overexpressed miR-375-loaded liposome nanoparticles on proliferation of cervical cancer (CC), to provide an insight on pathogenesis of CC disorder. CC cells were co-cultured with pure liposome nanoparticles (empty vector group), miR-375 agonist-loaded liposome nanoparticles, or transfected with miR-375 antagonist. Besides, some cells were exposed to TGF-β/Smads signaling pathway inhibitor or activator whilst cell proliferation was assessed by MTT assay, and expressions of FZD4 and miR-375 were determined. Western blot analysis was carried out to detect the expression of TGF-β pathway factors (TGF-β, Smad2, Smad7, p-Smad2) and its downstream Smads pathway. The interaction between miR-375 and FZD4 was evaluated by dual-luciferase reporter gene assay. Overexpression of miR-375 induced arrest at the G0/G1 phase of cell cycle and elevation of Smad2 protein expression (P <0.05), with lower expressions of TGF-β, Smad7, p-Smad2, and FZD4, while transfection with miR-375 inhibitor exhibited opposite activity. Presence of miR-375 agonist-loaded liposome nanoparticles induced decreased cell proliferation. There was a targeting relationship between miR-375 and FZD4, and administration with TGF-β/Smads agonist resulted in increased miR-375 and Smad2 expressions, as well as decreased TGF-β, Smad7, p-Smad2, FZD4 protein expression, and the number of S phase and G2/M phase cells (P < 0.05). The signaling inhibitor oppositely suppressed cell proliferation decreasing miR-375 expression. miR-375-loaded liposome nanoparticles activated TGF-β/Smads signaling pathway to restrain cell cycle and suppress cell division, and proliferation through targeting FZD4 in CC. Its molecular mechanism is related to activation of TGF-β/Smads signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document