scholarly journals Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

Author(s):  
Maria Vromans ◽  
Pouran Faghri

This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

2007 ◽  
Vol 98 (3) ◽  
pp. 1102-1107 ◽  
Author(s):  
Serajul I. Khan ◽  
John A. Burne

Muscle cramp was induced in one head of the gastrocnemius muscle (GA) in eight of thirteen subjects using maximum voluntary contraction when the muscle was in the shortened position. Cramp in GA was painful, involuntary, and localized. Induction of cramp was indicated by the presence of electromyographic (EMG) activity in one head of GA while the other head remained silent. In all cramping subjects, reflex inhibition of cramp electrical activity was observed following Achilles tendon electrical stimulation and they all reported subjective relief of cramp. Thus muscle cramp can be inhibited by stimulation of tendon afferents in the cramped muscle. When the inhibition of cramp-generated EMG and voluntary EMG was compared at similar mean EMG levels, the area and timing of the two phases of inhibition (I1, I2) did not differ significantly. This strongly suggests that the same reflex pathway was the source of the inhibition in both cases. Thus the cramp-generated EMG is also likely to be driven by spinal synaptic input to the motorneurons. We have found that the muscle conditions that appear necessary to facilitate cramp, a near to maximal contraction of the shortened muscle, are also the conditions that render the inhibition generated by tendon afferents ineffective. When the strength of tendon inhibition in cramping subjects was compared with that in subjects that failed to cramp, it was found to be significantly weaker under the same experimental conditions. It is likely that reduced inhibitory feedback from tendon afferents has an important role in generating cramp.


2003 ◽  
Vol 95 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
L Rochette ◽  
S. K. Hunter ◽  
N Place ◽  
R Lepers

Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 ± 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 ± 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 ± 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 ± 5.3%), but it ended at a similar value (45.4 ± 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).


2018 ◽  
Vol 13 (5) ◽  
pp. 604-611 ◽  
Author(s):  
Conall F. Murtagh ◽  
Christopher Nulty ◽  
Jos Vanrenterghem ◽  
Andrew O’Boyle ◽  
Ryland Morgans ◽  
...  

Purpose: To investigate differences in neuromuscular factors between elite and nonelite players and to establish which factors underpin direction-specific unilateral jump performance. Methods: Elite (n = 23; age, 18.1 [1.0] y; body mass index, 23.1 [1.8] kg·m−2) and nonelite (n = 20; age, 22.3 [2.7] y; body mass index, 23.8 [1.8] kg·m−2) soccer players performed 3 unilateral countermovement jumps (CMJs) on a force platform in the vertical, horizontal-forward, and medial directions. Knee extension isometric maximum voluntary contraction torque was assessed using isokinetic dynamometry. Vastus lateralis fascicle length, angle of pennation, quadriceps femoris muscle volume (Mvol), and physiological cross-sectional area (PCSA) were assessed using ultrasonography. Vastus lateralis activation was assessed using electromyography. Results: Elite soccer players presented greater knee extensor isometric maximum voluntary contraction torque (365.7 [66.6] vs 320.1 [62.6] N·m; P = .045), Mvol (2853 [508] vs 2429 [232] cm3; P = .001), and PCSA (227 [42] vs 193 [25] cm2; P = .003) than nonelite. In both cohorts, unilateral vertical and unilateral medial CMJ performance correlated with Mvol and PCSA (r ≥ .310, P ≤ .043). In elite soccer players, unilateral vertical and unilateral medial CMJ performance correlated with upward phase vastus lateralis activation and angle of pennation (r ≥ .478, P ≤ .028). Unilateral horizontal-forward CMJ peak vertical power did not correlate with any measure of muscle size or activation but correlated inversely with angle of pennation (r = −.413, P = .037). Conclusions: While larger and stronger quadriceps differentiated elite from nonelite players, relationships between neuromuscular factors and unilateral jump performance were shown to be direction-specific. These findings support a notion that improving direction-specific muscular power in soccer requires improving a distinct neuromuscular profile.


1993 ◽  
Vol 74 (1) ◽  
pp. 170-175 ◽  
Author(s):  
J. A. Psek ◽  
E. Cafarelli

Coactivation is antagonist muscle activity that occurs during voluntary contraction. Recently, we showed that the extent of coactivity in the knee flexors decreases after a short period of resistance training of the knee extensors (8). The purpose of the present experiment was to study the time course of coactivation in the knee flexors during fatigue of the knee extensors. Ten male subjects performed repeated submaximal static leg extensions in a low-intensity long-duration and a high-intensity short-duration fatigue protocol until they could no longer produce the required force [time limit of endurance (Tlim)]. Maximal voluntary contraction (MVC), submaximal force, and surface electromyographic (EMG) activity were measured periodically. Vastus lateralis EMG increased progressively during fatigue of the extensor muscles (P < 0.05), resulting in a 38% change from control at Tlim. Biceps femoris EMG, which was our measure of coactivation, also increased by approximately 60% at Tlim in each protocol (P < 0.05). These observations lead us to conclude that a small but significant force loss during repeated static contractions to Tlim is due to an increase in antagonist activity. Moreover, the close correlation between the antagonist and agonist EMG supports the notion of a "common drive" to both motoneuron pools (10).


2009 ◽  
Vol 34 (4) ◽  
pp. 673-680 ◽  
Author(s):  
Natasha Paddock ◽  
David Behm

Complete inversion of the body in a seated position may occur in exceptional circumstances such as in overturned vehicles and during military maneuvers, with direct consequences on health and fatalities. However, the physiological responses to this condition have not been published previously. The purpose of this study was to compare neuromuscular responses to upright and inverted seated positions. Sixteen subjects performed maximal voluntary contraction (MVC) and submaximal voluntary contraction knee extensions (25%, 50%, and 75% of MVC) under upright and inverted seated positions. Force, quadriceps activation as measured by the interpolated twitch technique, electromyographic (EMG) activity of the vastus lateralis, and semitendenosis and evoked contractile properties of the quadriceps were measured. Results demonstrated that MVC force (p = 0.01, ↓6.1%) and vastus lateralis EMG (p = 0.009, ↓29.6%) decreased in the inverted compared with the upright position. Instantaneous strength in the inverted position was 19.3% lower than in the upright position (p = 0.005). Heart rate and diastolic and systolic blood pressures were 12.4%, 9.2%, and 10.7% lower (p < 0.0001), respectively, in the inverted position. In conclusion, a seated inverted position impaired MVC force and EMG activity, which could not be attributed to evoked contractile properties. The changes in heart rate and blood pressure may suggest inversion-induced alterations to the sympathetic nervous stimulation.


2020 ◽  
Vol 16 (2) ◽  
pp. 14-23 ◽  
Author(s):  
A. Buniya ◽  
Ali H. Al-Timemy ◽  
A. Aldoori ◽  
Rami N. Khushaba

Recording an Electromyogram (EMG) signal is essential for diagnostic procedures like muscle health assessment and motor neurons control. The EMG signals have been used as a source of control for powered prosthetics to support people to accomplish their activities of daily living (ADLs). This work deals with studying different types of hand grips and finding their relationship with EMG activity. Five subjects carried out four functional movements (fine pinch, tripod grip and grip with the middle and thumb finger, as well as the power grip). Hand dynamometer has been used to record the EMG activity from three muscles namely; Flexor Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS), and Abductor Pollicis Brevis (ABP) with different levels of Maximum Voluntary Contraction (MVC) (10-100%). In order to analyze the collected EMG and force data, the mean absolute value of each trial is calculated followed by a calculation of the average of the 3 trials for each grip for each subject across the different MVC levels utilized in the study. Then, the mean and the standard deviation (SD) across all participants (3 males and 2 females) are calculated for FCR, FDS and APB muscles with multiple % MVC, i.e 10, 30, 50, 70 % MVC for each gesture. The results showed that APB muscle has the highest mean EMG activity across all grips, followed by FCR muscle. Furthermore, the grip with the thumb and middle fingers is the grip with the highest EMG activity for 10-70% MVC than the power grip. As for the 100% MVC, thumb and middle fingers grip achieved the highest EMG activity for APB muscle, while the power grip has the highest EMG activity for both FCR and FDS muscles.  


Author(s):  
Kelly Stratton ◽  
Pouran D. Faghri

The effect of three electrical stimulation (ES) frequencies (10, 35, and 50 Hz) on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB) and vastus lateralis (VL)) was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations). Surface electromyography (sEMG) and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years) participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1) compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC) force, and 2) compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD) was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz) induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.


2006 ◽  
Vol 95 (6) ◽  
pp. 3328-3335 ◽  
Author(s):  
Julien Gondin ◽  
Julien Duclay ◽  
Alain Martin

The aim of the study was to use combined longitudinal measurements of soleus (SOL) and gastrocnemii evoked V-wave and H-reflex responses to determine the site of adaptations within the central nervous system induced by 5 wk of neuromuscular electrical stimulation (NMES) training of the plantar flexor muscles. Nineteen healthy males subjects were divided into a neuromuscular electrostimulated group ( n = 12) and a control group ( n = 7). The training program consisted of 15 sessions of isometric NMES over a 5-wk period. All subjects were tested before and after the 5-wk period. SOL, lateral gastrocnemius (LG), and medial gastrocnemius (MG) maximal H-reflex and M-wave potentials were evoked at rest (i.e., Hmax and Mmax, respectively) and during maximal voluntary contraction (MVC) (i.e., Hsup and Msup, respectively). During MVC, a supramaximal stimulus was delivered that allowed us to record the V-wave peak-to-peak amplitudes from all three muscles. The SOL, LG, and MG electromyographic (EMG) activity as well as muscle activation (twitch interpolation technique) were also quantified during MVC. After training, plantar flexor MVC increased significantly by 22% ( P < 0.001). Torque gains were accompanied by an increase in muscle activation (+11%, P < 0.05), SOL, LG, and MG normalized EMG activity (+51, +54, and +60%, respectively, P < 0.05) and V/Msup ratios (+81, +76, and +97%, respectively, P < 0.05). Hmax/Mmax and Hsup/Msup ratios for all three muscles were unchanged after training. In conclusion, the increase in voluntary torque after 5 wk of NMES training could be ascribed to an increased volitional drive from the supraspinal centers and/or adaptations occurring at the spinal level.


2021 ◽  
Author(s):  
Nilson Ribeiro dos Santos Silva ◽  
Matheus Pacheco ◽  
Rafael Akira Fujita ◽  
Marina Mello Villalba ◽  
MATHEUS MACHADO GOMES

Objective To elucidate the muscle recruitment patterns and interindividual variability during co-contraction training sessions for lower limbs. Methods Ten active male young adults underwent two days of tests, in which they performed, for each leg, a maximal isometric voluntary contraction protocol followed by a co-contraction training set. We acquired myoelectric (EMG) activity from the sartorius, biceps femoris long and short heads, semitendinosus, semimembranosus, rectus femoris, vastus lateralis and vastus medialis and tensor facia latae during both protocols. We used iterative HLM analyses and bootstrap ANOVAs to explain within and between participant variances. Results On average, participants started recruiting 36% of their maximum EMG amplitude, showing decays of 0.41% per repetition and increasing 7.45% from day 1 to day 2. Participants who started with higher recruitment showed greater decays over repetitions and vice-versa. The training stimulated similarly the ratio of participants’ flexors and extensors. However, participants demonstrated different average muscle recruitment patterns with some individuals modifying, largely, their recruitment over repetitions/days. Between and within-variability in recruitment pattern was maintained throughout repetitions and days. We found no consistent similarity in terms of pairs of participants as to find common types of recruitment. Conclusion Co-contraction training seems to be effective to recruit thigh muscles of both legs along an entire set of repetitions and days. Despite the accounted variations in intramuscular recruitment, co-contraction training evokes similar muscular in flexor’s and extensor’s recruitment among participants.


Author(s):  
Marco Cenzato ◽  
Roberto Stefini ◽  
Francesco Zenga ◽  
Maurizio Piparo ◽  
Alberto Debernardi ◽  
...  

Abstract Background Cerebellopontine angle (CPA) surgery carries the risk of lesioning the facial nerve. The goal of preserving the integrity of the facial nerve is usually pursued with intermittent electrical stimulation using a handheld probe that is alternated with the resection. We report our experience with continuous electrical stimulation delivered via the ultrasonic aspirator (UA) used for the resection of a series of vestibular schwannomas. Methods A total of 17 patients with vestibular schwannomas, operated on between 2010 and 2018, were included in this study. A constant-current stimulator was coupled to the UA used for the resection, delivering square-wave pulses throughout the resection. The muscle responses from upper and lower face muscles triggered by the electrical stimulation were displayed continuously on multichannel neurophysiologic equipment. The careful titration of the electrical stimulation delivered through the UA while tapering the current intensity with the progression of the resection was used as the main strategy. Results All operations were performed successfully, and facial nerve conduction was maintained in all patients except one, in whom a permanent lesion of the facial nerve followed a miscommunication to the neurosurgeon. Conclusion The coupling of the electrical stimulation to the UA provided the neurosurgeon with an efficient and cost-effective tool and allowed a safe resection. Positive responses were obtained from the facial muscles with low current intensity (lowest intensity: 0.1 mA). The availability of a resection tool paired with a stimulator allowed the surgeon to improve the surgical workflow because fewer interruptions were necessary to stimulate the facial nerve via a handheld probe.


Sign in / Sign up

Export Citation Format

Share Document