scholarly journals Characterization of a “New Greenhouse Model”: with and without insect proof-screen

2017 ◽  
Vol 11 ◽  
Author(s):  
Luigi Santonicola ◽  
Antonietta Napolitano ◽  
Francesco Castelluccio ◽  
Barbara Greco ◽  
Michele De Maio ◽  
...  

In the " Natural ventilation greenhouse", patented new greenhouse model which maximizes the natural ventilation and allows stable installation of the anti-insect proof-screen. The effects of the presence or absence of the anti-insect proof-screen are compared on different parameters of the soil (moisture, pH, EC (Electrical Conductivity), nitrates), of greenhouse environment (irradiance, Hargreaves-Samani ETo (reference crop evapotranspiration)) and of plant (fresh matter, dry matter, Leaf Area Index (LAI)). The presence of the insect proofscreen reduces the water needs of tomato, in fact soil moisture, water delivered and ETo are significantly lower compared to the greenhouse without an insect proof-screen, also it reduces the EC and nitrates in the soil. It improves LAI, doubles the amount of fresh matter of plant parts and triples the fresh matter of the productive part with respect to the greenhouse without anti-insect proof-screen.

2020 ◽  
Vol 44 (04) ◽  
pp. 14-21

This study was conducted to study the relationship between capsicum crop evapotranspiration inside (ETCin) and crop evapotranspiration outside (ETCout) the naturally ventilated polyhouse (NVPH) using meteorological parameters. Polyhouse has a straightway impact on air temperature and relative humidity while it indirectly influences soil temperature and soil moisture inside the structure. Under this study, crop evapotranspiration was estimated by conventional method i.e., obtaining reference evapotranspiration from weather data recorded inside the polyhouse and multiplying it with crop coefficient values of capsicum crop. Reference crop evapotranspiration inside and outside the polyhouse found as 745.19 mm and 590.22 mm, respectively whereas capsicum crop evapotranspiration inside and outside the polyhouse was 868.40 mm and 694.16 mm, respectively. The results of the study revealed that the relationship between weekly ETCin and ETCout can be expressed mathematically as ETCin = 0.84 ETCout. This implies that, there was approximately 15 % lower crop evapotranspiration requirement for the capsicum crop inside the naturally ventilated polyhouse as compared to outside the polyhouse.


2019 ◽  
Vol 37 (4) ◽  
pp. 373-378
Author(s):  
Izabela P Martins ◽  
Rogério T de Faria ◽  
Luiz F Palaretti ◽  
Miquéias G dos Santos ◽  
João Alberto Fischer Filho

ABSTRACT The basil (Ocimum basilicum) crop is of great importance for trading as fresh or dried condiment for human consumption and essential oil for pharmaceutical and cosmetic industries. Water excesses and deficits can affect biomass production of plants, making it necessary to use the correct amount of water for each crop. Considering that determinations of water consumption and cultivation coefficients for medicinal plants are scarce, the aim of this study was determining evapotranspiration and crop coefficients of basil using lysimeters. The crop evapotranspiration was determined by weighing lysimeters for the replacements of 100, 75 and 50% of the maximum daily evapotranspiration. The reference crop evapotranspiration was estimated by the Penman-Monteith equation. Crop evapotranspiration for the 49 day cycle was 471, 352 and 236 mm, and daily rates ranged from 4.8 to 9.4; 4 to 8.1 and 3.7 to 7.4 mm/day, for the replacements of 100, 75 and 50% of the maximum daily evapotranspiration. Crop coefficients varied from 1.5 to 2.8 and were related to the days after transplanting, leaf area index, cover ratio and cumulative degrees-day.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Ziyang Zhao ◽  
Hongrui Wang ◽  
Cheng Wang ◽  
Wangcheng Li ◽  
Hao Chen ◽  
...  

The impact of global climate change on agroecosystems is growing, affecting reference crop evapotranspiration (ET0) and subsequent agricultural water management. In this study, the climate factors temporal trends, the spatiotemporal variation, and the climate driving factors of ET0 at different time scales were evaluated across the Northern Yellow River Irrigation Area (NYR), Central Arid Zone (CAZ), and Southern Mountain Area (SMA) of Ningxia based on 20 climatic stations’ daily data from 1957 to 2018. The results showed that the Tmean (daily mean air temperature), Tmax (daily maximum air temperature), and Tmin (daily minimum air temperature) all had increased significantly over the past 62 years, whilst RH (relative humidity), U2 (wind speed at 2 m height), and SD (sunshine duration) had significantly decreasing trends across all climatic zones. At monthly scale, the ET0 was mainly concentrated from April to September. And at annual and seasonal scales, the overall increasing trends were more pronounced in NX, NYR, and SMA, while CAZ was the opposite. For the spatial distribution, ET0 presented a trend of rising first and then falling at all time scales. The abrupt change point for climatic factors and ET0 series was obtained at approximately 1990 across all climatic zones, and the ET0 had a long period of 25a and a short period of 10a at annual scale, while it was 15a and 5a at seasonal scale. RH and Tmax were the most sensitive climatic factors at the annual and seasonal scales, while the largest contribution rates were Tmax and SD. This study not only is important for the understanding of ET0 changes but also provides the preliminary and elementary reference for agriculture water management in Ningxia.


Sign in / Sign up

Export Citation Format

Share Document