scholarly journals Mozingo Studies I. Ice phenology and limnological legacies in a mid-continental reservoir

Author(s):  
Kurt A. Haberyan

<p>Long-term, integrated records of limnology are rare in the central United States.  Mozingo Lake is a reservoir in northwestern Missouri that was sampled regularly since its creation in 1994.  Physical data were collected during 121 visits and compared to meteorological observations. July hypolimnetic temperatures have risen rapidly (2.4°C / decade: P=0.037), suggesting weakened summer stratification in the future.  Winter conditions were rarely correlated with lake conditions in the following July; the exception is July epilimnion temperature, which correlated with ice-over date, January hypolimnion temperature, and ice duration (P=0.006, 0.010, and 0.024).  In contrast, winter ice-over date was best correlated with air temperature in the preceding July (P=0.006); other factors were not significantly correlated, including fall air temperatures, July epilimnion temperatures, and October water column temperatures. Analysis of air temperatures preceding ice-over revealed that the strongest correlation was with a 68-day average air temperature of 4.8°C. July air temperatures, along with ice-over date, correlated with January ice thickness and ice duration (P=0.014 and 0.001, respectively). This suggests that a warm July is associated with a mild winter, a relationship confirmed by a significant correlation (P=0.011). Ice thickness, ice duration, and ice-out date also correlated with winter air temperature (P≤0.003 for each). It therefore appears that summer conditions influence winter conditions which, in turn, influence certain lake conditions in the following summer; this observation indicates that winter conditions may not reset physical parameters in lakes.  Legacies thus may span various intervals, ranging from a week to a year or more.  Although the Mozingo Lake record is brief (20 years), it suggests directions for longer-term studies.  Multi-year legacy effects have rarely been documented, but in Mozingo Lake they suggest that a single strong climatic anomaly may affect the lake for several years.  </p>

2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


2019 ◽  
Author(s):  
Alex Zavarsky ◽  
Lars Duester

Abstract. River temperature is an important parameter for water quality and an important variable for physical, chemical and biological processes. River water is also used by production facilities as cooling agent.We introduce a new way of calculating a catchment-wide air temperature and regressing river temperature vs air temperatures. As a result the meteorological influence and the anthropogenic influence can be studied separately. We apply this new method at four monitoring stations (Basel, Worms, Koblenz and Cologne) along 5 the Rhine and show that the long term trend (1979–2018) of river water temperature is, next to the increasing air temperature, mostly influenced by decreasing nuclear power production. Short term changes on time scales


Climate ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 98 ◽  
Author(s):  
Arash Mohegh ◽  
Ronnen Levinson ◽  
Haider Taha ◽  
Haley Gilbert ◽  
Jiachen Zhang ◽  
...  

The effects of neighborhood-scale land use and land cover (LULC) properties on observed air temperatures are investigated in two regions within Los Angeles County: Central Los Angeles and the San Fernando Valley (SFV). LULC properties of particular interest in this study are albedo and tree fraction. High spatial density meteorological observations are obtained from 76 personal weather-stations. Observed air temperatures were then related to the spatial mean of each LULC parameter within a 500 m radius “neighborhood” of each weather station, using robust regression for each hour of July 2015. For the neighborhoods under investigation, increases in roof albedo are associated with decreases in air temperature, with the strongest sensitivities occurring in the afternoon. Air temperatures at 14:00–15:00 local daylight time are reduced by 0.31 °C and 0.49 °C per 1 MW increase in daily average solar power reflected from roofs per neighborhood in SFV and Central Los Angeles, respectively. Per 0.10 increase in neighborhood average albedo, daily average air temperatures were reduced by 0.25 °C and 1.84 °C. While roof albedo effects on air temperature seem to exceed tree fraction effects during the day in these two regions, increases in tree fraction are associated with reduced air temperatures at night.


2015 ◽  
Vol 54 (12) ◽  
pp. 2339-2352 ◽  
Author(s):  
S.-Y. Simon Wang ◽  
Lawrence E. Hipps ◽  
Oi-Yu Chung ◽  
Robert R. Gillies ◽  
Randal Martin

AbstractBecause of the geography of a narrow valley and surrounding tall mountains, Cache Valley (located in northern Utah and southern Idaho) experiences frequent shallow temperature inversions that are both intense and persistent. Such temperature inversions have resulted in the worst air quality in the nation. In this paper, the historical properties of Cache Valley’s winter inversions are examined by using two meteorological stations with a difference in elevation of approximately 100 m and a horizontal distance apart of ~4.5 km. Differences in daily maximum air temperature between two stations were used to define the frequency and intensity of inversions. Despite the lack of a long-term trend in inversion intensity from 1956 to present, the inversion frequency increased in the early 1980s and extending into the early 1990s but thereafter decreased by about 30% through 2013. Daily mean air temperatures and inversion intensity were categorized further using a mosaic plot. Of relevance was the discovery that after 1990 there was an increase in the probability of inversions during cold days and that under conditions in which the daily mean air temperature was below −15°C an inversion became a certainty. A regression model was developed to estimate the concentration of past particulate matter of aerodynamic diameter ≤ 2.5 μm (PM2.5). The model indicated past episodes of increased PM2.5 concentrations that went into decline after 1990; this was especially so in the coldest of climate conditions.


MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 417-428
Author(s):  
JANAK LAL NAYAVA ◽  
SUNIL ADHIKARY ◽  
OM RATNA BAJRACHARYA

This paper investigates long term (30 yrs) altitudinal variations of surface air temperatures based on air temperature data of countrywide scattered 22 stations (15 synoptic and 7 climate stations) in Nepal. Several researchers have reported that rate of air temperature rise (long term trend of atmospheric warming) in Nepal is highest in the Himalayan region (~ 3500 m asl or higher) compared to the Hills and Terai regions. Contrary to the results of previous researchers, however this study found that the increment of annual mean temperature is much higher in the Hills (1000 to 2000 m asl) than in the Terai and Mountain Regions. The temperature lapse rate in a wide altitudinal range of Nepal (70 to 5050 m asl) is -5.65 °C km-1. Warming rates in Terai and Trans-Himalayas (Jomsom) are 0.024 and 0.029 °C/year respectively.  


1997 ◽  
Vol 9 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Stephen A. Harangozo ◽  
Steven R. Colwell ◽  
John C. King

An analysis of a long-term surface air temperature record for Fossil Bluff in the George VI Sound, West Antarctic Peninsula (WAP) documents in detail some important aspects of the climate of this area for the first time. The analysis identifies the close dependency of air temperatures on latitude in the WAP but reveals that the strength of this dependency is greatest in winter. This result along with others leads to the Fossil Bluff climate regime being characterized as ‘continental’ rather than ‘maritime’ as found further north. The WAP as a whole displays large interannual temperature variability but this is greatest in Marguerite Bay rather than the Fossil Bluff area. Evidence is also provided for secular climatic change appearing in summer throughout the WAP over the last few decades. The representativeness of existing Antarctic Peninsula annual air temperature climatologies, based mainly on snow temperature measurements, for the winter and summer periods is also noted.


2006 ◽  
Vol 43 ◽  
pp. 285-291 ◽  
Author(s):  
V. Zagorodnov ◽  
O. Nagornov ◽  
L.G. Thompson

AbstractSeasonal temperature variations occur in the glacier layer about 15–20 m below the surface, while at greater depths the glacier temperature depends on the long-term surface conditions. It is generally accepted that for glaciers without surface melting the temperature at 10 m depth (T10) is close to the mean annual air temperature at standard screen level (Ta), i.e. T10 =Ta. We found that this relationship is not valid for Ta above –17˚C and below –55˚C. The goal of our investigation is to find a better temperature transfer function (TTF) between Ta and temperature at the boundary of the active layer in accumulation areas of polar and tropical glaciers. Low-precision T10 temperatures from boreholes, obtained at 41 sites, are compared with air temperatures (Ta) measured in the vicinity of these sites for at least a 1 year period. We determine that when Ta falls into the temperature range –60 to –7˚C, empirical values can be approximated as T10 = 1:2Ta + 6:7. Analysis of these data suggests that high T10 occurs in the areas of the glacier that collect meltwater.


2012 ◽  
Vol 6 (3) ◽  
pp. 2005-2036 ◽  
Author(s):  
S. H. Mernild ◽  
N. T. Knudsen ◽  
J. C. Yde ◽  
M. J. Hoffman ◽  
W. H. Lipscomb ◽  
...  

Abstract. Glaciers in Southeast Greenland have thinned and receded during the past several decades. Here, we document changes for the Mittivakkat Gletscher, the only glacier in Greenland with long-term mass balance observations and surface velocity measurements (since 1995). Between 1986 and 2011, this glacier shrank by 18 % in surface area, 20 % in mean ice thickness, and 33 % in volume. We attribute these changes to summertime warming and to drier winter conditions. Meanwhile, the annual mean ice surface velocity decreased by 30 %, likely as a dynamic result of thinning. This dynamic thinning is predicted by ice deformation theory but has rarely been observed on decadal time scales. Mittivakkat Gletscher summer surface velocities were on average 50–60 % above winter background values, and up to 160 % higher during peak velocity events. The transition from winter to summer values followed the onset of positive temperatures. Satellite observations show area losses for most other glaciers in the region; these glaciers are likely also to have lost volume (in average around one-third) and slowed down in recent decades.


2005 ◽  
Vol 130 (4) ◽  
pp. 500-507 ◽  
Author(s):  
R.C. Ebel ◽  
B.L. Campbell ◽  
M.L. Nesbitt ◽  
W.A. Dozier ◽  
J.K. Lindsey ◽  
...  

Estimates of long-term freeze-risk aid decisions regarding crop, cultivar, and rootstock selection, cultural management practices that promote cold hardiness, and methods of freeze protection. Citrus cold hardiness is mostly a function of air temperature, but historical weather records typically contain only daily maximum (Tmax) and minimum (Tmin) air temperatures. A mathematical model was developed that used Tmax and Tmin to estimate air temperature every hour during the diurnal cycle; a cold-hardiness index (CHI500) was calculated by summing the hours ≤10°C for the 500 h before each day; and the CHI500 was regressed against critical temperatures (Tc) that cause injury. The CHI500 was calculated from a weather station located within 0.1 km of an experimental grove and in the middle of the satsuma mandarin (Citrus unshiu Marc.) industry in southern Alabama. Calculation of CHI500 was verified by regressing a predicted CHI500 using Tmax and Tmin, to a measured CHI500 calculated using air temperatures measured every hour for 4 winter seasons (1999-2003). Predicted CHI500 was linearly related to measured CHI500 (r2 = 0.982). However, the slope was a little low such that trees with a CHI500 = 400, near the maximum cold-hardiness level achieved in this study, had predicted Tc that was 0.5 °C lower than measured Tc. Predicted and measured Tc were similar for nonhardened trees (CHI500 = 0). The ability of predicted Tc to estimate freeze injury was determined in 18 winter seasons where freeze injury was recorded. During injurious freeze events, predicted Tc was higher than Tmin except for a freeze on 8 Mar. 1996. In some freezes where the difference in Tc and Tmin was <0.5 °C there were no visible injury symptoms. Injury by the freeze on 8 Mar. 1996 was due, in part, to abnormally rapid deacclimation because of defoliation by an earlier freeze on 4-6 Feb. the same year. A freeze rating scale was developed that related the difference in Tc and Tmin to the extent of injury. Severe freezes were characterized by tree death (Tc - Tmin > 3.0 °C), moderate freezes by foliage kill and some stem dieback (1.0 °C ≤ Tc - Tmin ≤ 3.0 °C), and slight freezes by slight to no visible leaf injury (Tc - Tmin < 1.0 °C). The model was applied to Tmax and Tmin recorded daily from 1948 through 2004 to estimate long-term freeze-risk for economically damaging freezes (severe and moderate freeze ratings). Economically damaging freezes occurred 1 out of 4 years in the 56-year study, although 8 of the 14 freeze years occurred in two clusters, the first 5 years in the 1960s and 1980s. Potential modification of freeze-risk using within-tree microsprinkler irrigation and more cold-hardy cultivars was discussed.


2021 ◽  
Author(s):  
H. Bay Berry ◽  
Dustin Whalen ◽  
Michael Lim

Response of erosive mechanisms to climate change is of mounting concern on Beaufort Sea coasts, which experience some of the highest erosion rates in the Arctic. Collapse of intact permafrost blocks and slumping within sprawling retrogressive thaw complexes are two predominant mechanisms that manifest as cliff retreat in this region. Using aerial imagery and ground survey data from Pullen Island, N.W.T., Canada, from 13 time points between 1947 and 2018, we observe increasing mean retreat rates from 0 ± 4.8 m/a in 1947 to 12 ± 0.3 m/a in 2018. Mean summer air temperature was positively correlated with cliff retreat over each time step via block failure (r2 = 0.08; p = 0.5) and slumping (r2 = 0.41; p = 0.05), as was mean storm duration with cliff retreat via block failure (r2 = 0.84; p = 0.0002) and slumping (r2 = 0.34; p = 0.08). These data indicate that air temperature has a greater impact in slump-dominated areas, while storm duration has greater control in areas of block failure. Increasingly heterogeneous cliff retreat rates are likely resulting from different magnitudes of response to climate trends depending on mechanism, and on geomorphological variations that prescribe occurrences of retrogressive thaw slumps.


Sign in / Sign up

Export Citation Format

Share Document