scholarly journals GLI IDROCARBURI TRA IMPATTO ECONOMICO, RICERCA E PROSPETTIVE

Author(s):  
Roberto Aniello Calabrò

Fossil fuels are the only non-renewable energy sources on which the world economy is based directly affect development. The main producer countries are located in the Middle-East (oil) and Russia and Middle East (gas). The oil search began in 1860 and has had a significant development during the Second World War, and in particularly in the post-war development, linked to the reconstruction. The formation of hydrocarbons is linked to the presence of fine-grained rocks (shales and limestone) that contain organic matter (1-14%), of vegetable (such as algae and leaves) and animal origin (microorganisms). When the rocks that contain this organic substance are buried subjected to high lithostatic load and the temperature reaches about 90°C, the organic matter begins to be transformed and at a temperature of about 120°C, begins to form oil, and at a temperature of about 140°C, gas is generated. After generation and migration the hydrocarbons accumulate in porous rocks (reservoirs), characterized by a geometry structures allowing their accumulation. Above the reservoir there should be a fine-grained and impermeable rock, that does not allow oil to disperse. In recent years, oil & gas companies have started to invest on non-conventional hydrocarbons, in particular, represented by shale gas and oil sands. To date, proven oil reserves amounted to 1.333 billion barrels of oil and 187.490 billion cubic meters of gas, reserves estimated to last for about approximately 50 years. If we add unconventional hydrocarbon reserves available and take into account the current consumption rate we could estimate that we would have oil for about 100 years more.

Author(s):  
Carlos Germán Meza ◽  
Nilton Bispo Amado ◽  
Ildo Sauer

The measures for tackling the COVID-19 may shrink the global GDP by approximately 6% in 2020, the deepest post-war recession. As a result, the global energy demand declined by 3.8% in the first quarter of 2020. Concerning fossil fuels, this conjuncture reduced the demand drastically and collapsed the prices to historic levels. Despite the general market disruptions, renewable energy sources (RES) seem to be more resilient to the crisis because they are the only sources that will grow in demand in 2020, driven by priority dispatch. The RES´s significant growth in cumulative installed capacity in the last two decades and the significant cost reductions of RES and energy storage technologies are positive signs towards better market conditions for the global energy transition. Currently, the crisis is seen by international agencies and transition scholars as an opportunity to advance a renewable-based energy transformation. Nevertheless, this article aims at caution about another possibility: if societal changes are not urgently implemented, the crisis may weaken the global energy transition. This article examines this last possibility from a three-level perspective: 1) post-COVID economic recovery, 2) low oil and natural gas prices and competitiveness of alternative sources and, 3) reorganization of the world energy market and the OPEC+. This paper exists to stimulate debate.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


Author(s):  
Damilola S Olawuyi

Despite increasing political emphasis across the Middle East on the need to transition to lower carbon, efficient, and environmentally responsible energy systems and economies, legal innovations required to drive such transitions have not been given detailed analysis and consideration. This chapter develops a profile of law and governance innovations required to integrate and balance electricity generated from renewable energy sources (RES-E) with extant electricity grid structures in the Middle East, especially Gulf countries. It discusses the absence of renewable energy laws, the lack of legal frameworks on public–private partnerships, lack of robust pricing and financing, and lack of dedicated RES-E institutional framework. These are the main legal barriers that must be addressed if current national visions of a low-carbon transition across the Middle East are to move from mere political aspirations to realization.


Author(s):  
Anita Rønne

Increasing focus on sustainable societies and ‘smart cities’ due to emphasis on mitigation of climate change is simultaneous with ‘smart regulation’ reaching the forefront of the political agenda. Consequently, the energy sector and its regulation are undergoing significant innovation and change. Energy innovations include transition from fossil fuels to more renewable energy sources and application of new computer technology, interactively matching production with consumer demand. Smart cities are growing and projects are being initiated for development of urban areas and energy systems. Analysis from ‘Smart Cities Accelerator’, developed under the EU Interreg funding programme that includes Climate-KIC,——provides background for the focus on a smart energy system. Analysis ensures the energy supply systems support the integration of renewables with the need for new technologies and investments. ‘Smart’ is trendy, but when becoming ‘smart’ leads to motivation that is an important step towards mitigating climate change.


2019 ◽  
Vol 40 (1) ◽  
pp. 7
Author(s):  
Marcelo Silveira de Farias ◽  
José Fernando Schlosser ◽  
Javier Solis Estrada ◽  
Gismael Francisco Perin ◽  
Alfran Tellechea Martini

The growing global demand of energy, the decrease of petroleum reserves and the current of environmental contamination problems, make it imperative to study renewable energy sources for use in internal combustion engines, in order to decrease the dependence on fossil fuels and reduce emissions of pollutant gases. This study aimed to evaluate the emissions of a diesel-cycle engine of an agricultural tractor that uses diesel S500 (B5) mixed with 3, 6, 9, 12 and 15% of hydrous ethanol. It determined emissions of CO2 (ppm), NOx (ppm), and opacity (k value) of gases. A standard procedure was applied considering eight operating modes (M1, M2, M3, M4, M5, M6, M7, and M8) by breaking with an electric dynamometer in a laboratory. The experimental design was completely randomized, with 60 replicates and a 6 x 8 factorial design. Greater opacity and gas emissions were observed when the engine operated with 3% ethanol, while lower emissions occurred with 12 and 15%. With these fuels, the reduction of opacity, CO2, and NOx, in relation to diesel oil, was 24.49 and 26.53%, 4.96 and 5.15%, and 6.59 and 9.70%, respectively. In conclusion, the addition of 12 and 15% ethanol in diesel oil significantly reduces engine emissions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1347
Author(s):  
Kyriakos Maniatis ◽  
David Chiaramonti ◽  
Eric van den Heuvel

The present work considers the dramatic changes the COVID-19 pandemic has brought to the global economy, with particular emphasis on energy. Focusing on the European Union, the article discusses the opportunities policy makers can implement to reduce the climate impacts and achieve the Paris Agreement 2050 targets. The analysis specifically looks at the fossil fuels industry and the future of the fossil sector post COVID-19 pandemic. The analysis first revises the fossil fuel sector, and then considers the need for a shift of the global climate change policy from promoting the deployment of renewable energy sources to curtailing the use of fossil fuels. This will be a change to the current global approach, from a relative passive one to a strategically dynamic and proactive one. Such a curtailment should be based on actual volumes of fossil fuels used and not on percentages. Finally, conclusions are preliminary applied to the European Union policies for net zero by 2050 based on a two-fold strategy: continuing and reinforcing the implementation of the Renewable Energy Directive to 2035, while adopting a new directive for fixed and over time increasing curtailment of fossils as of 2025 until 2050.


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


2021 ◽  
Vol 50 (4-5) ◽  
pp. 433-444
Author(s):  
Olusola Joshua Olujobi ◽  
Temilola Olusola-Olujobi

Fossil fuels have been the mainstream of energy supply and a major source of foreign exchange earnings for the Federal Government of Nigeria, in spite of being an unrenewable and unsustainable source of energy. Nigeria is yet to tap into the full benefits after privatising its power sector, including the new global evolution in the energy sector and the resulting increasing demand for renewable energy sources, which some consider to be cheaper and more environmentally friendly than fossil fuels and their allied products. Energy security is a challenge to socio-economic development in Nigeria, due to the country’s over-dependency on fossil fuels. In terms of their impact and the potentials to preserve energy sources for longevity and sustainability, however, fossil fuels will come to be seen as an out-dated alternative in the power sector as the energy industry evolves. The implications for Nigeria’s oil sector will not be limited to dwindling crude oil prices. The concerns include poor energy utilisation in Nigeria and the need to promote energy efficiency and sustainability. They have led to the formulation of new energy policies around the world to serve as a vehicle for translating solutions into reality. This study has adopted a library-based legal research method with a comparative approach. The study reveals that it is the lack of a coherent legal framework with incentives for using renewable energy that is largely seen as the key issue causing slow uptake of renewable energy as an alternative source of energy in Nigeria. As well as the need for a coherent legal framework on energy and incentives for using renewable energy sources, the study advocates stringent enforcement of existing energy regulatory policies.


2014 ◽  
Vol 70 (a1) ◽  
pp. C20-C20
Author(s):  
Evgeny Antipov ◽  
Nellie Khasanova

Ninety percent of the energy produced today come from fossil fuels, making dramatically negative impact on our future due to rapid consumption of these energy sources, ecological damage and climate change. This justifies development of the renewable energy sources and concurrently efficient large storage devices capable to replace fossil fuels. Li-ion batteries have originally been developed for portable electronic devices, but nowadays new application niches are envisaged in electric vehicles and stationary energy storages. However, to satisfy the needs of these rapidly growing applications, Li-ion batteries require further significant improvement of their properties: capacity and power, cyclability, safety and cost. Cathode is the key part of the Li-ion batteries largely determining their performance. Severe requirements are imposed on a cathode material, which should provide fast reversible intercalation of Li-ions at redox potential close to the upper boundary of electrolyte stability window, possess relatively low molecular weight and exhibit small volume variation upon changing Li-concentration. First generation of the cathode materials for the Li-ion batteries based on the spinel (LiM2O4, M – transition metal) or rock-salt derivatives (LiMO2) has already been widely commercialised. However, the potential to further improve the performance of these materials is almost exhausted. The compounds, containing lithium and transition metal cations together with different polyanions (XmOn)p- (X=B, P, S, Si), are now considered as the most promising cathode materials for the next generation of the Li-ion batteries. Covalently-bonded structural frameworks in these compounds offer long-term structural stability, which is essential for good cyclability and safety. Further advantages are expected from combining different anions (such as (XO4)p- and F- ) in the anion sublattice, with the hope to enhance the specific energy and power of these materials. Various fluoride-phosphates and fluoride-sulphates have been recently discovered, and some of them exhibit attractive electrochemical performance. An overview of the research on the cathode materials for the Li-ion batteries will be presented with special emphasis on crystallography as a guide towards improved properties important for practical applications.


Sign in / Sign up

Export Citation Format

Share Document