scholarly journals Perceived effort of funtional activities after a period of mechanical ventilation

2002 ◽  
Vol 58 (4) ◽  
Author(s):  
R. Roos ◽  
H. Van Aswegen ◽  
C. J. Eales

A case report to assess exercise testing post-mechanical ventilation, using functional activities while monitoring changes in the physiological parameters and subjective rating of perceived exertion.  The case report subject was able to use the Modified Borg Scale to report  her perception of perceived exertion during functional exercise testing.  An increase in heart rate, respiratory rate and Modified Borg Scale rating was noted on progression through the exercise test.  Difficulty was experienced with subject follow-up due to discharged from hospital as soon as the patient was considered to be medically stable.  The subject was unable to complete the functional exercise test before discharge.

2004 ◽  
Vol 60 (2) ◽  
Author(s):  
R. Roos ◽  
H. Van Aswegen ◽  
C. J. Eales ◽  
P. J. Becker

In this study, physical recovery of patients who received prolonged mechanical ventilation (PMV) was assessed with a six-phase functional exercise test after the period of ventilation. A prospective correlation study using a consecutive sampling method was carried out over a six-month period. Thirty-one patients were tested but five were lost to follow-up Statistical tests included the Pearson’s correlation coefficient, student’s paired t-test and Kaplan-Meier survival estimate. Subjective perceived effort changed significantly from phase to phase in the exercise test and over time (p < 0.00) Heart rate and respiratory rate responses indicated increased cardio-respiratory effort during the test. No correlation existed between subjective perceived


Author(s):  
J Clark

Objective. Despite their widespread use in exercise testing, few data are available on the effect of wearing respiratory gas collection (RGC) systems on exercise test performance. Industrial-type mask wear is thought to impair exercise performance through increased respiratory dead space, flow resistance and/or discomfort when compared with RGC facemasks, but whether performance decrements exist for RGC facemask wear versus non-wear is unclear. The objective of this study was to evaluate the difference in incremental exercise test performance with and without a RGC system. Incremental exercise test performance with and without a respiratory gas collection system  Design. Twenty moderately active males (age 21.0 ± 1.9 years; VO2peak 55.9 ± 3.0 ml∙kg-1∙min-1) performed two progressive treadmill tests to volitional exhaustion. In random order subjects ran with (MASK) or without (NO-MASK) a RGC facemask and flow sensor connected to a gas analyzer. Descriptive data (mean ± SD) were determined for all parameters. The Wilcoxon signed rank test for paired differences was used to assess mean differences between MASK and NO-MASK conditions. Results. Exercise time to exhaustion, peak treadmill speed, peak blood lactate concentration, peak heart rate and rating of perceived exertion (RPE) were not different (p>0.05) between MASK and NO-MASK conditions. Conclusions. Incremental exercise test performance is not adversely affected by RGC and analysis equipment, at least in short duration progressive treadmill exercise. Respiratory gas analysis during exercise testing for diagnostic, performance assessment or training prescription purposes would appear to be unaffected by RGC systems.


Author(s):  
J Clark

Objective. Despite their widespread use in exercise testing, few data are available on the effect of wearing respiratory gas collection (RGC) systems on exercise test performance. Industrial-type mask wear is thought to impair exercise performance through increased respiratory dead space, flow resistance and/or discomfort when compared with RGC facemasks, but whether performance decrements exist for RGC facemask wear versus non-wear is unclear. The objective of this study was to evaluate the difference in incremental exercise test performance with and without a RGC system. Incremental exercise test performance with and without a respiratory gas collection system  Design. Twenty moderately active males (age 21.0 ± 1.9 years; VO2peak 55.9 ± 3.0 ml∙kg-1∙min-1) performed two progressive treadmill tests to volitional exhaustion. In random order subjects ran with (MASK) or without (NO-MASK) a RGC facemask and flow sensor connected to a gas analyzer. Descriptive data (mean ± SD) were determined for all parameters. The Wilcoxon signed rank test for paired differences was used to assess mean differences between MASK and NO-MASK conditions. Results. Exercise time to exhaustion, peak treadmill speed, peak blood lactate concentration, peak heart rate and rating of perceived exertion (RPE) were not different (p>0.05) between MASK and NO-MASK conditions. Conclusions. Incremental exercise test performance is not adversely affected by RGC and analysis equipment, at least in short duration progressive treadmill exercise. Respiratory gas analysis during exercise testing for diagnostic, performance assessment or training prescription purposes would appear to be unaffected by RGC systems.


2021 ◽  
Vol 6 (3) ◽  
pp. 66
Author(s):  
Tristan Tyrrell ◽  
Jessica Pavlock ◽  
Susan Bramwell ◽  
Cristina Cortis ◽  
Scott T. Doberstein ◽  
...  

Exercise prescription based on exercise test results is complicated by the need to downregulate the absolute training intensity to account for cardiovascular drift in order to achieve a desired internal training load. We tested a recently developed generalized model to perform this downregulation using metabolic equivalents (METs) during exercise testing and training. A total of 20 healthy volunteers performed an exercise test to define the METs at 60, 70, and 80% of the heart rate (HR) reserve and then performed randomly ordered 30 min training bouts at absolute intensities predicted by the model to achieve these levels of training intensity. The training HR at 60 and 70% HR reserve, but not 80%, was significantly less than predicted from the exercise test, although the differences were small. None of the ratings of perceived exertion (RPE) values during training were significantly different than predicted. There was a strong overall correlation between predicted and observed HR (r = 0.88) and RPE (r = 0.52), with 92% of HR values within ±10 bpm and 74% of RPE values within ±1 au. We conclude that the generalized functional translation model is generally adequate to allow the generation of early absolute training loads that lead to desired internal training loads.


Sports ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Laura Hottenrott ◽  
Martin Möhle ◽  
Sarah Feichtinger ◽  
Sascha Ketelhut ◽  
Oliver Stoll ◽  
...  

Due to physiological and morphological differences, younger and older athletes may recover differently from training loads. High-intensity interval training (HIIT) protocols are useful for studying the progression of recovery. It was the objective of this study to determine age differences in performance and recovery following different HIIT protocols. Methods: 12 younger (24.5 ± 3.7 years) and 12 older (47.3 ± 8.6 years) well-trained cyclists and triathletes took part in this study. Between the age groups there were no significant differences in relative peak power to fat-free mass, maximal heart rate (HR), training volume, and VO2max-percentiles (%). Participants performed different HIIT protocols consisting of 4 × 30 s Wingate tests with different active rest intervals (1, 3, or 10 min). Peak and average power, lactate, HR, respiratory exchange ratio (RER), subjective rating of perceived exertion (RPE), and recovery (Total Quality Recovery scale, TQR) were assessed. Results: During the different HIIT protocols, metabolic, cardiovascular, and subjective recovery were similar between the two groups. No significant differences were found in average lactate concentration, peak and average power, fatigue (%), %HRmax, RER, RPE, and TQR values between the groups (p > 0.05). Conclusion: The findings of this study indicate that recovery following HIIT does not differ between the two age groups. Furthermore, older and younger participants displayed similar lactate kinetics after the intermittent exercise protocols.


2020 ◽  
Author(s):  
Satoshi Nashimoto ◽  
Shinichiro Morishita ◽  
Kazuki Hotta ◽  
Susumu Iida ◽  
Atsuhiro Tsubaki

Abstract Background: The Borg scale is used to determine exercise intensity in rehabilitation but can be difficult for older adults to understand. By contrast, face scale that are used to evaluate pain are much easier to understand thanks to the inclusion of illustrations. On the other hand, the prevalence of atrial fibrillation (AF) increases with age. We aimed to investigate the correlation between face scale for rating of perceived exertion (RPE) and various physiological parameters during cardiopulmonary exercise testing in older adults and AF patients. We also investigated the relationship between Face Scale and anaerobic threshold (AT).Methods: Patients were asked to perform a ramp cardiopulmonary exercise test with an incremental increase in work rate (WR) of 10 watts/min, using a stationary bicycle until maximum fatigue. We recorded participant responses using a face scale for RPE compared with WR, heart rate (HR), oxygen uptake (VO₂), and minute ventilation (VE) every minute during the exercise test. We determined the AT by the V-slope method.Results: We enrolled 90 sinus rhythm (SR) patients (74 men 16 women) and 22 AF patients. For SR men, SR women and AF, there were significant positive correlations between the face scale RPE and HR, VO₂, WR, and VE. There was no statistically significant differences difference in correlation coefficient between age and SR or AF. The cutoff value for AT of the Face Scale was “4” and it showed high sensitivity and specificity.Conclusions: These results suggest that the face scale can be used to determine the intensity of physical exercise equivalent to AT unaffected by age, gender, SR or AF.


2019 ◽  
Vol 14 (7) ◽  
pp. 980-986
Author(s):  
Peter Ibbott ◽  
Nick Ball ◽  
Marijke Welvaert ◽  
Kevin G. Thompson

Purpose: To assess pacing strategies using prescribed and self-selected interset rest periods and their influence on performance in strength-trained athletes. Methods: A total of 16 strength-trained male athletes completed 3 randomized heavy strength-training sessions (5 sets and 5 repetitions) with different interset rest periods. The interset rest periods were 3 min (3MIN), 5 min (5MIN), and self-selected (SS). Mechanical (power, velocity, work, and displacement), surface electromyography (sEMG), and subjective (rating of perceived exertion) and readiness-to-lift data were recorded for each set. Results: SS-condition interset rest periods increased from sets 1 to 4 (from 207.52 to 277.71 s; P = .01). No differences in mechanical performance were shown between the different interset rest-period conditions. Power output (210 W; 8.03%) and velocity (0.03 m·s−1; 6.73%) decreased as sets progressed for all conditions (P < .001) from set 1 to set 5. No differences in sEMG activity between conditions were shown; however, vastus medialis sEMG decreased as the sets progressed for each condition (1.75%; P = .005). All conditions showed increases in rating of perceived exertion as sets progressed (set 1 = 6.1, set 5 = 7.9; P < .001). Participants reported greater readiness to lift in the 5MIN condition (7.81) than in the 3MIN (7.09) and SS (7.20) conditions (P < .001). Conclusions: Self-selecting interset rest periods does not significantly change performance compared with 3MIN and 5MIN conditions. Given the opportunity, athletes will vary their interset rest periods to complete multiple sets of heavy strength training. Self-selection of interset rest periods may be a feasible alternative to prescribed interset rest periods.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1661
Author(s):  
Gabrielle de Lima Borba ◽  
Julianne Soares de Freitas Batista ◽  
Ludmilla Marques Queiroz Novais ◽  
Myrnzzia Beatriz Silva ◽  
João Batista da Silva Júnior ◽  
...  

The aim was to evaluate the effect of caffeine (CAF) and extra virgin coconut oil (CO), isolated or combined, on running performance in runners. Methods: A randomized, placebo-controlled, and crossover study was conducted with thirteen recreational runners aged 18–40. All volunteers performed a 1600 m time trial at a 400 m track, each ingesting four different substances: (1) placebo (water), (2) decaffeinated coffee plus isolated CAF (DECAF + CAF), (3) decaffeinated coffee plus isolated CAF plus soy oil (DECAF + CAF + SO), and (4) decaffeinated coffee plus isolated CAF plus extra virgin coconut oil (DECAF + CAF + CO). The substances were ingested 60 min before the trials, the order of the situations was randomized, and there were one-week intervals between them. At the end of the trials, the Borg scale was applied to evaluate the rating of perceived exertion (RPE) and the time was measured. Results: Our data did not show differences in running time among the trials (placebo: 7.64 ± 0.80, DECAF + CAF: 7.61 ± 1.02, DECAF + CAF + SO: 7.66 ± 0.89, and DECAF + CAF + CO: 7.58 ± 0.74 min; p = 0.93), nor RPE (placebo: 6.15 ± 2.03, DECAF + CAF: 6.00 ± 2.27, DECAF + CAF + SO: 6.54 ± 2.73, and DECAF + CAF + CO: 6.00 ± 2.45 score; p = 0.99). Lactate concentrations (placebo: 6.23 ± 2.72, DECAF + CAF: 4.43 ± 3.77, DECAF + CAF + SO: 5.29 ± 3.77, and DECAF + CAF + CO: 6.17 ± 4.18 mmol/L; p = 0.55) also was not modified. Conclusion: Our study shows that ingestion of decaffeinated coffee with the addition of isolated CAF and extra virgin CO, either isolated or combined, does not improve 1600 m running times, nor influence RPE and lactate concentrations in recreational runners. Thus, combination of coffee with CO as a pre-workout supplement seems to be unsubstantiated for a short-distance race.


2019 ◽  
Vol 14 (9) ◽  
pp. 1244-1249 ◽  
Author(s):  
Chelsie E. Winchcombe ◽  
Martyn J. Binnie ◽  
Matthew M. Doyle ◽  
Cruz Hogan ◽  
Peter Peeling

Purpose: To determine the reliability and validity of a power-prescribed on-water (OW) graded exercise test (GXT) for flat-water sprint kayak athletes. Methods: Nine well-trained sprint kayak athletes performed 3 GXTs in a repeated-measures design. The initial GXT was performed on a stationary kayak ergometer in the laboratory (LAB). The subsequent 2 GXTs were performed OW (OW1 and OW2) in an individual kayak. Power output (PWR), stroke rate, blood lactate, heart rate, oxygen consumption, and rating of perceived exertion were measured throughout each test. Results: Both PWR and oxygen consumption showed excellent test–retest reliability between OW1 and OW2 for all 7 stages (intraclass correlation coefficient > .90). The mean results from the 2 OW GXTs (OWAVE) were then compared with LAB, and no differences in oxygen consumption across stages were evident (P ≥ .159). PWR was higher for OWAVE than for LAB in all stages (P ≤ .021) except stage 7 (P = .070). Conversely, stroke rate was lower for OWAVE than for LAB in all stages (P < .010) except stage 2 (P = .120). Conclusions: The OW GXT appears to be a reliable test in well-trained sprint kayak athletes. Given the differences in PWR and stroke rate between the LAB and OW tests, an OW GXT may provide more specific outcomes for OW training.


Sign in / Sign up

Export Citation Format

Share Document