scholarly journals Intelligent control of a renewable, energy-efficient bulk storage tank for dairy farms

Author(s):  
Wiehan A. Pelser

No abstract available

2021 ◽  
Vol 231 ◽  
pp. 02003
Author(s):  
Giedrė Streckienė ◽  
Juozas Bielskus ◽  
Dovydas Rimdžius ◽  
Vytautas Martinaitis ◽  
Violeta Motuzienė

With the growing demand for energy efficient HVAC systems and integration of renewable energy sources, existing energy transformers are being improved and new solutions are being sought. Various energy storage technologies are applied to solve unpredictable renewable energy flows. This paper investigates an innovative ventilation system with roof turbine ventilator and variable volume isobaric air tank, which is used to store an excessive wind energy. The study focuses mainly on isobaric air storage tank operation. The experimental results of the tank charging and discharging processes under different operation conditions are presented. These conditions include different weights placed on the top of the storage and air flow rates in the wind tunnel. The operation of the tank during one windy day in chosen location is studied. The obtained data showed the initial results of the operation of the developed ventilation system and possible modifications in order to improve its functionality.


Smart Cities ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 471-495
Author(s):  
Viktor Stepaniuk ◽  
Jayakrishnan Pillai ◽  
Birgitte Bak-Jensen ◽  
Sanjeevikumar Padmanaban

The smart active residential buildings play a vital role to realize intelligent energy systems by harnessing energy flexibility from loads and storage units. This is imperative to integrate higher proportions of variable renewable energy generation and implement economically attractive demand-side participation schemes. The purpose of this paper is to develop an energy management scheme for smart sustainable buildings and analyze its efficacy when subjected to variable generation, energy storage management, and flexible demand control. This work estimate the flexibility range that can be reached utilizing deferrable/controllable energy system units such as heat pump (HP) in combination with on-site renewable energy sources (RESs), namely photovoltaic (PV) panels and wind turbine (WT), and in-house thermal and electric energy storages, namely hot water storage tank (HWST) and electric battery as back up units. A detailed HP model in combination with the storage tank is developed that accounts for thermal comforts and requirements, and defrost mode. Data analytics is applied to generate demand and generation profiles, and a hybrid energy management and a HP control algorithm is developed in this work. This is to integrate all active components of a building within a single complex-set of energy management solution to be able to apply demand response (DR) signals, as well as to execute all necessary computation and evaluation. Different capacity scenarios of the HWST and battery are used to prioritize the maximum use of renewable energy and consumer comfort preferences. A flexibility range of 22.3% is achieved for the scenario with the largest HWST considered without a battery, while 10.1% in the worst-case scenario with the smallest HWST considered and the largest battery. The results show that the active management and scheduling scheme developed to combine and prioritize thermal, electrical and storage units in buildings is essential to be studied to demonstrate the adequacy of sustainable energy buildings.


Author(s):  
Aisha Ajeerah Azahar ◽  
◽  
Nor Akmal Mohd Jamail ◽  
Amal Hayati Mat Isa ◽  
Fatin Nazirah Md Sani ◽  
...  

Economical home system can be defined as one realization of home that have a cost-effective ideal by using specific set of technologies combined with the renewable energy as a power supply. This system has a highly advance for lighting, temperature control, socket and own power supply by using solar panel. This system is developed in this project and focused on B40 community that represents the bottom 40% of income earners and also this project becomes suitable for this community for getting an energy efficiency system. Due to the COVID-19, B40 households were reported to have lost their jobs causing financial hardship and had to face the issue of high electricity bills which are very burdensome for them at all in order to pay the cost electricity for monthly. The aim of the article is to design and simulate the solar power system including battery storage in suitable software for a residential house especially in B40 community home and also to analyze the potential of battery storage in order to store the energy from solar panel. Therefore, the economical electricity home system using solar energy for B40 community is proposed in this project for producing an energy efficient system at home. In addition, an electrical floor plan and floor plan of B40 community home is designed in the SketchUp software that using basic electrical equipment such as lighting, ceiling fan and socket. The system is developed by using the MATLAB software in order to produce the result of energy efficiency by using the renewable energy which is solar system and also battery storage. According to the data produced from the calculation of old bills and new bills, the energy consumptions are calculated and also be compared before and after using the renewable energy which is using solar system. The data obtained through calculation of maximum demand in new bill is used in the simulation of solar system in MATLAB software. The results obtained show that after using an energy-efficient load, the monthly new bill is around RM 27.79 which is around RM 10.75 less than the monthly old bill before using an energy-efficient load. It can be concluded that the use of renewable energy in B40 community home can save the energy and also money.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Agrim Gupta ◽  
Silvio Savarese ◽  
Surya Ganguli ◽  
Li Fei-Fei

AbstractThe intertwined processes of learning and evolution in complex environmental niches have resulted in a remarkable diversity of morphological forms. Moreover, many aspects of animal intelligence are deeply embodied in these evolved morphologies. However, the principles governing relations between environmental complexity, evolved morphology, and the learnability of intelligent control, remain elusive, because performing large-scale in silico experiments on evolution and learning is challenging. Here, we introduce Deep Evolutionary Reinforcement Learning (DERL): a computational framework which can evolve diverse agent morphologies to learn challenging locomotion and manipulation tasks in complex environments. Leveraging DERL we demonstrate several relations between environmental complexity, morphological intelligence and the learnability of control. First, environmental complexity fosters the evolution of morphological intelligence as quantified by the ability of a morphology to facilitate the learning of novel tasks. Second, we demonstrate a morphological Baldwin effect i.e., in our simulations evolution rapidly selects morphologies that learn faster, thereby enabling behaviors learned late in the lifetime of early ancestors to be expressed early in the descendants lifetime. Third, we suggest a mechanistic basis for the above relationships through the evolution of morphologies that are more physically stable and energy efficient, and can therefore facilitate learning and control.


1988 ◽  
Vol 51 (11) ◽  
pp. 840-841 ◽  
Author(s):  
MICHAEL B. LIEWEN ◽  
MARK W. PLAUTZ

Raw milk samples were obtained from bulk storage tanks of individual dairy farms in eastern Nebraska during February and July of 1986. One hundred different farms were tested during each period. One-tenth ml of each sample was plated directly onto McBride's Listeria Agar (MLA) and 30 ml was subjected to a four-week cold enrichment procedure. Suspect colonies from MLA were subjected to biochemical tests to confirm identity. Nine percent of all raw milk samples examined were determined to be positive for Listeria species after the cold enrichment procedure. Four percent contained L. monocytogenes and five percent contained L. innocua. Six percent and two percent of samples were found to contain L. monocytogenes in February and July respectively.


Sign in / Sign up

Export Citation Format

Share Document