scholarly journals Concomitant upregulation of nuclear factor-kB activity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model

2005 ◽  
Vol 53 (3) ◽  
pp. 312 ◽  
Author(s):  
ChunHua Hang ◽  
Ji-Xin Shi ◽  
Jie-Shou Li ◽  
Wei Wu ◽  
HongXia Yin
2020 ◽  
Author(s):  
Shinya Morita ◽  
Kazunobu Shinoda ◽  
Tadashi Yoshida ◽  
Masayuki Shimoda ◽  
Yoshihiko Kanno ◽  
...  

Abstract Background: Cyclosporine A (CsA) is an essential immunosuppressant in organ transplantation. However, its chronic nephrotoxicity is an obstacle to long allograft survival that has not been overcome. Nuclear factor-kB (NF-kB) is activated in the renal tissue in CsA nephropathy. In this study, we aimed to investigate the effect of the specific NF-kB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in a rat model of CsA nephrotoxicity. Methods: We administered CsA (15 mg/kg) daily for 28 days to Sprague-Dawley rats that underwent 5/6 nephrectomy under a low-salt diet. We administered DHMEQ (8 mg/kg) simultaneously with CsA to the treatment group, daily for 28 days and evaluated its effect on CsA nephrotoxicity. Results: DHMEQ significantly inhibited NF-kB activation and nuclear translocation due to CsA treatment. Elevated serum urea nitrogen and creatinine levels due to repeated CsA administration were significantly decreased by DHMEQ treatment (serum urea nitrogen in CsA + DHMEQ vs CsA vs control, 69 ± 6.4 vs 113.5 ± 8.8 vs 43.1 ± 1.1 mg/dL, respectively, p < 0.0001; serum creatinine in CsA + DHMEQ vs CsA vs control, 0.75 ± 0.02 vs 0.91 ± 0.02 vs 0.49 ± 0.02 mg/dL, respectively, p < 0.0001), and creatinine clearance was restored in the treatment group (CsA + DHMEQ vs CsA vs control, 2.57 ± 0.09 vs 1.94 ± 0.12 vs 4.61 ± 0.18 ml/min/kg, respectively, p < 0.0001). However, DHMEQ treatment did not alter the inhibitory effect of CsA on urinary protein secretion. The development of renal fibrosis due to chronic CsA nephrotoxicity was significantly inhibited by DHMEQ treatment (CsA + DHMEQ vs CsA vs control, 13.4 ± 7.1 vs 35.6 ± 18.4 vs 9.4 ± 5.4%, respectively, p < 0.0001), and these results reflected the results of renal functional assessment. DHMEQ treatment also had an inhibitory effect on the increased expression of chemokines, monocyte chemoattractant protein-1, and chemokine (c-c motif) ligand 5 due to repeated CsA administration, which inhibited the infiltration of macrophages and neutrophils into the renal tissue.Conclusions: These findings suggest that DHMEQ treatment in combination therapy with CsA-based immunosuppression is beneficial to prevent the development of CsA-induced nephrotoxicity.


2020 ◽  
Vol 18 (3) ◽  
pp. 260-265
Author(s):  
Xu Lin ◽  
Zheng Xiaojun ◽  
Lv Heng ◽  
Mo Yipeng ◽  
Tong Hong

The purpose of this study was to evaluate the protective effect of swertiamarin on heart failure. To this end, a rat model of heart failure was established via left coronary artery ligation. Infarct size of heart tissues was determined using triphenyl tetrazolium chloride staining. Echocardiography was performed to evaluate cardiac function by the determination of ejection fraction, left ventricular internal dimension in diastole and left ventricular internal dimension in systole. The effect of swertiamarin on oxidative stress was evaluated via enzyme-linked immunosorbent assay. The mechanism was evaluated using western blot. Administration of swertiamarin reduced the infarct size of heart tissues in rat models with heart failure. Moreover, swertiamarin treatment ameliorated the cardiac function, increased ejection fraction and fractional shortening, decreased left ventricular internal dimension in diastole and left ventricular internal dimension in systole. Swertiamarin improved oxidative stress with reduced malondialdehyde, while increased superoxide dismutase, glutathione, and GSH peroxidase. Furthermore, nuclear-factor erythroid 2-related factor 2, heme oxygenase and NAD(P)H dehydrogenase (quinone 1) were elevated by swertiamarin treatment in heart tissues of rat model with heart failure. Swertiamarin alleviated heart failure through suppression of oxidative stress response via nuclear-factor erythroid 2-related factor 2/heme oxygenase-1 pathway providing a novel therapeutic strategy for heart failure.


2018 ◽  
Vol 69 (9) ◽  
pp. 2541-2545
Author(s):  
Raluca Barzoi ◽  
Elena Rezus ◽  
Codruta Badescu ◽  
Razan Al Namat ◽  
Manuela Ciocoiu

There is a bidirectional interaction between most immune cells and osteoblasts, osteoclasts and their precursor cells. The receptor activator of nuclear factor-kB ligand (RANKL)/RANK/osteoprotegerin (OPG) system plays an essential role in the formation of osteoblasts, but it also has implications in osteoclast biology and implicitly on the diseases characterized by bone loss. Proinflammatory cytokines existing at synovial level function as direct or indirect stimulators of osteoclast differentiation, but also of its survival or activity, although some cytokines may also play an antiosteocastogenic role. The fate of bone destruction is determined by the balance between osteoclastogenic and antiosteoclastogenic mediators. Our study has shown that the early initiation of the therapy with anti-TNF and anti-IL6 biological agents, in patients with rheumatoid arthritis, inhibits bone destruction, regardless of the anti-inflammatory activity in patients with rheumatoid arthritis.


2012 ◽  
Vol 12 (6) ◽  
pp. 484-492 ◽  
Author(s):  
Kazunari Ozaki ◽  
Hirofumi Makino ◽  
Motokuni Aoki ◽  
Takashi Miyake ◽  
Natsuki Yasumasa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document