scholarly journals Вплив хлориду кадмію на стан антиоксидантної системи у печінці щурів

Author(s):  
Б. В. Гутий

Розкрито особливості антиоксидантної системиорганізму щурів за хронічного кадмієвого токсикозу.Встановлено, що хлорид кадмію у токсичній дозісприяє зниженню активності ферментної й нефер-ментної системи антиоксидантного захисту, на щовказує зниження ферментів глутатіонпероксидази,глутатіонредуктази, супероксиддисмутази, катала-зи та відновленого глутатіону у печінці щурів. Ре-зультати досліджень вказують на те, що хронічнийкадмієвий токсикоз призводить до посиленої акти-вації процесів ліпопероксидації. The features of the antioxidant system of rats with chronic cadmium toxicosiare disclosed. It wasresearched that cadmium chloride in toxic doses reduces enzyme activity of antioxidant system, asindicated by the decrease in enzyme glutathione peroxidase, hlutationreduktazy, superoxide dismutase,catalase and restored glutathione in the liver and blood of rats. The results indicate that chroniccadmium toxicosis leads to enhanced activation of lipid peroxidation.

2016 ◽  
Vol 24 (1) ◽  
pp. 96-102 ◽  
Author(s):  
B. V. Gutyj ◽  
S. D. Mursjka ◽  
D. F. Hufrij ◽  
I. I. Hariv ◽  
N. D. Levkivska ◽  
...  

This article presents the results of research on the influence of cadmium loading on the state level of enzymatic and non-enzymatic antioxidant links of the antioxidant defense system of the organisms of young cattle, such as the activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels, selenium, vitamins A and E. It was found that feeding bull calves with cadmium chloride at doses of 0.03 and 0.05 mg/kg of body weight helped to reduce both the enzymatic and non-enzymatic link of antioxidant protection (superoxide dismutase 31%, catalase 13%, glutathione peroxidase 23%, reduced glutathione 10%, vitamin A 28%, vitamin E 31%, selenium 20%). Toxic effects of cadmium promotes change in steady-state concentrations of radical metabolites О2–,ОН˙, НО2˙, which, in turn, trigger the process of lipid peroxidation. The lowest level of indicators of antioxidant defense system in the blood of young cattle was registered on the sixteenth and twenty-fourth days of the experiment, which is associated with increased activation of lipid peroxidation and the disturbaance of the balance between the antioxidant system and lipid peroxidation intensity. The activity of the antioxidant defense system in the blood was different for calves fed with cadmium chloride at doses of 0.03 and 0.05 mg/kg of animal mass. The more cadmium chloride in the feed, the lower the activity of the antioxidant defense system of the calves’ organisms was registered. Thus cadmium chloride depresses the antioxidant defense system, which specifically involves lowering the activity of enzymatic links (catalase, superoxide dismutase, glutathione peroxidase) and non-enzymatic links (reduced glutathione, selenium, vitamins A and E).


2000 ◽  
Vol 23 (3) ◽  
pp. 173-180 ◽  
Author(s):  
J. Eiselt ◽  
J. Racek ◽  
K. Opatrnyjr

The authors monitored, for a period of 12 months, anemia-, nutrition-, and free radical-related parameters and the rHuEPO dose required to maintain target hemoglobin (Hb) in 20 patients with chronic renal failure. Ten patients each were randomized for treatment by either acetate-free biofiltration (AFB) or low-flux hemodialysis (HD). At baseline, Hb levels were 102±2 (AFB) vs. 98±2 g/L (HD) (not significant difference, NS), the rHuEPO dose was 4050±976 vs. 5100±1538 IU/week (NS). Compared with baseline and with HD, lower rHuEPO doses were required during AFB at months 8, 9, 10 and 11, and 12 when they were 2100±510 (AFB) vs. 6000±1153 (HD), p=0.008. Prealbumin, transferrin and cholinesterase levels rose in the AFB group. Kt/V, albumin, transferrin saturation, aluminium, bicarbonate in serum, superoxide dismutase and glutathione peroxidase in erythrocytes, and malondialdehyde and antioxidant capacity in plasma did not differ between the AFB and HD groups. In terms of anemia control, AFB using an AN69 membrane was found to be more advantageous than low-flux HD, AFB improves some nutritional parameters. The compared methods do not differ in their effect on lipid peroxidation and the antioxidant system. (Int J Artif Organs 2000; 23: 173–80)


The indicators of the activity of lipid peroxidation and the antioxidant system were studied in dynamics in 158 patients with infectious mononucleosis depending on the severity of the clinical course of the disease. It is proved that lipid peroxidation is significantly activated in patients with infectious mononucleosis as the severity of the disease increases and therefore increases the oxidative activity of blood plasma, the concentration of dyne conjugates and malondialdehyde in the blood, decreases the activity of antioxidant enzymes of erythrocytes (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase), glutathione peroxidase and glutathione reductase activity in plasma and lowering the concentration of total and reduced glutathione in the blood, as well as reduce the antioxidant activity of blood plasma and erythrocytes. Lipid peroxidation significantly increase and the activity of the antioxidant system decrease in patients with infectious mononucleosis in the acute period of the disease, as evidenced by the increased concentration of dyne conjugates, malonic dialdehyde and total oxidative plasma activity in the blood, reduced activity of the total antioxidant activity of plasma and erythrocytes, the decrease in the activity of antioxidant enzymes of erythrocytes catalase, superoxide dismutase, glutathione peroxidase, glutathione peroxidase and glutathione reductase of blood plasma, the decrease in the concentration of glutathione in the blood. The most pronounced disorders of lipid peroxidation and antioxidant system activity were found in patients with moderate-severe and severe infectious mononucleosis. The development of cytolytic syndrome in infectious mononucleosis is associated with the action of reactive oxygen forms species and lipid hydroperoxide.


2013 ◽  
Vol 4 (2) ◽  
pp. 52-56 ◽  
Author(s):  
O.K. Onufrovych ◽  
D.Z. Vorobets ◽  
Z.D. Vorobets

Since the development of many disorders of the reproductive function in men involves processes of free radical oxidation, the purpose of this study was to form an evaluation of the pro- and antioxidant status of sperm and to restore its biological usefulness in men with excretory-toxic forms of infertility by using drugs with antioxidant properties. It is shown that excretory-toxic forms of infertility in men are mostly caused by such infectious agents as Chlamydia (22%), Chlamydia + Ureaplasma (16%), Chlamydia + Trichomonas (13%), Ureaplasma (10%). This reduces the total number of sperm in the ejaculate by 2.7 times, and motility by 1.8 times. The number of abnormal forms increases by 1.75 times. With the development of chronic inflammation of the male sex organs sperm lipid peroxidation increases by 1.3 times while the activity of glutathione peroxidase decreases (by 2.3 times) and that of glutathione reductase (by 1.7 times). We observed a close correlation between the low biological quality of sperm (low concentration, low number and motility of sperm in the ejaculate) with activation of lipid peroxidation and inhibition of activity of the glutathione antioxidant system. In the case of superoxide dismutase, the negative impact of reactive oxygen species on this enzyme was not observed. A course of drugs with antioxidant properties – vitamin E, vitamin C and zinc sulfate leads to improvement in the indicators on the spermagram (mostly sperm mobility and morphology), to reduction of the number of peroxide compounds and activation of the glutathione antioxidant system. In this case, the activity of glutathione peroxidase is increased by 1.5 times and the activity of glutathione reductase by 1.3 times. The activity of superoxide dismutase at the same time approaches the norm for zoospermia. The data obtained show that one of the pathogenic factors of the chronic inflammation of male sex organs, considered as a main developmental reason for infertility in its excretory-toxic form, is the increase in activity of the peroxide oxygen lipids of the sperm membrane and decompensation of the enzyme activity of the glutathione antioxidant system. Our data indicate that the use as medicines of vitamin E, vitamin C and zinc sulfate combined with antibiotic therapy would be highly effective in the treatment of male infertility.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


2020 ◽  
Vol 174 (2) ◽  
pp. 80-85
Author(s):  
R. G. Myazin ◽  
D. N. Emel’yanov

The aim of this study was to study the eff ects of using the infusion drug Remaxol in young patients with alcoholic liver disease.Materials and methods: the clinical and laboratory data of 80 young patients with alcoholic liver disease were analyzed, divided depending on the treatment regimen into 2 groups: the main (n = 44) who received Remaxol according to the scheme: 400 ml iv, drip, at a rate 40–60 drops per minute daily, course No. 5–10, and control (n = 36) — received basic therapy. In all patients, the dynamics in blood serum was studied: lipid peroxidation indices (malondialdehyde, diene conjugates), antioxidant protection enzymes (catalase, SOD, glutathione peroxidase), markers of cytolysis, cholestasis and lipid metabolism.Results: initially there was a significant increase in lipid peroxidation processes, accompanied by slight stimulation of the antioxidant system of the liver and pronounced signs of cytolysis and cholestasis. The inclusion of Remaxol in treatment regimens leads to a significant decrease in the level of malondialdehyde and diene conjugates, and the restoration of the antioxidant system (increase in catalase, SOD, and glutathione peroxidase). At the same time, a marked decrease in the syndromes of cytolysis and cholestasis was noted, which was accompanied by an improvement in the condition of the patients: cessation of nausea, restoration of appetite and sleep, and improvement of well-being.


2014 ◽  
Vol 13 (3) ◽  
pp. 51-55
Author(s):  
L. G. Netyukhailo ◽  
T. A. Sukhomlin ◽  
Ya. A. Basarab ◽  
V. V. Bondarenko ◽  
S. V. Kharchenko

The objective of research was to study the state of prooxidant and antioxidant systems in the tissues of the lungs, kidneys, pancreas and salivary glands at burn disease. The intensity of the free radical processes was evaluated on the basis of the content of malondialdehyde (MDA) and antioxidant system – based on the indexes of its enzymatic chain: superoxide dismutase and catalase in homogenates of the studied organs. It has been found that changes in experimental burn disease depend on the studied organs and the stage of burn disease. The activation of free radical processes observed in all investigated organs (lungs, kidneys, pancreas and salivary glands). Reactive oxygen species induce lipid peroxidation, which is a universal marker of tissue damage. MDA appears in the body during degradation of polyunsaturated fatty acids and it’s a marker of lipid peroxidation and oxidative stress. It was found the increasing of MDA in all organs, especially in the lungs and kidneys at stage of burn shock. Under these conditions it was observed the decrease of superoxide dismutase and catalase in all investigated organs. At burn disease there is development of disbalance between the action of prooxidant and antioxidant systems due to the activation of free radical processes.


2016 ◽  
Vol 18 (2(66)) ◽  
pp. 52-59
Author(s):  
B.V. Gutyj ◽  
Y. Lavryshyn ◽  
V. Binkevych ◽  
O. Binkevych ◽  
О. Paladischuk ◽  
...  

The article contains the research results of the effect of cadmium chloride on the indexes of enzyme and nonenzyme systems of  antioxidant defense system in young cattle, such as the activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels of vitamins A and E. It is established that feeding calves at a dose of toxicant 0.04 mg / kg activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels of vitamins A and E in the blood of experimental animals decreased throughout the experiment. The lowest indicators of antioxidant in the blood of young cattle is set on the twenty -fourth day of the experiment, which is associated with increased activation of lipid peroxidation and the balance between antioxidant system and lipid peroxidation intensity. Given the cadmium load of young cattle it is used a new integrated drug with antioxidant action «Metisevit», which includes metifen, sodium selenite and vitamin E wich is founded as stimulating effects on the activity of antioxidant protection. In particular,it is established probable increase in activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels, vitamin A and vitamin E in the blood of young cattle, which has performed cadmium stress. These changes occur through comprehensive action components of the drug «Metisevit» that leads to the normalization of metabolic processes and free radical in the body of the bull. The results of the research indicate antioxidant drug «Metisevit» in the application of its young cattle and the validity of his administration to improve the body's antioxidant status of chronic cadmium toxicosis.


Sign in / Sign up

Export Citation Format

Share Document