scholarly journals Removal of nitrogen and organic matter in a submerged-membrane bioreactor operating in a condition of simultaneous nitrification and denitrification

Author(s):  
Izabela Major Barbosa ◽  
José Carlos Mierzwa ◽  
Ivanildo Hespanhol ◽  
Eduardo Lucas Subtil

This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS) in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5) and Total Organic Carbon (TOC). Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN) and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND) conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR) system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.

2012 ◽  
Vol 550-553 ◽  
pp. 2104-2107
Author(s):  
Yi Ming Chen

The impact of SRT on simultaneous nitrification and denitrification (SND) in the Carrousel Oxidation Ditch was carried out based on pilot-scale to treat low COD/TN municipal sewage. The impact factor, sludge retention time (SRT), was investigated on the occurrence of SND. The experiment results showed that in the oxygen-deficient environment whose DO was 0.3 mg/L, R of 50%, MLSS of 4000 mg/L, the treatment efficiency achieved the best with SRT of 20 d, the COD, ammonia nitrogen, total nitrogen (TN) of effluent were lower than 32 mg/L, 5 mg/L, 13 mg/L, respectively, which was observed efficient phenomenon of SND. Overall, these results demonstrated that the Carrousel Oxidation Ditch with the occurrence of SND could have the potential to treat low C/N sewage.


2014 ◽  
Vol 70 (9) ◽  
pp. 1456-1464 ◽  
Author(s):  
Guoren Xu ◽  
Chao Jia ◽  
Zhao Zhang ◽  
Yunlong Jiang

Biological treatment processes give relatively poor pollutant removal efficiencies in cold regions because microbial activity is inhibited at low temperatures. We developed an enhanced physicochemical-biological wastewater treatment process that involves micro-membrane filtration, anaerobic biofilter, and aerobic biofilter to improve the pollutant removal efficiencies that can be achieved under cold conditions. Full-scale experiments using the process were carried out in the northeast of China, at outdoor temperatures of around −30 °C. The average removal efficiencies achieved for chemical oxygen demand, total phosphorus, ammonia nitrogen, and suspended solids were 89.8, 92.9, 94.3, and 95.8%, respectively, using a polyaluminium chloride dosage of 50 mg L−1. We concluded that the process is effective to treat sewage in cold regions.


2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


2012 ◽  
Vol 518-523 ◽  
pp. 2431-2438
Author(s):  
Ying Zhang Wang ◽  
Shang Hua Zhang ◽  
Chang Qing Pang ◽  
Jie Li

Luffa cylindrical sponge and plastic sponge were used as carriers in sequencing batch biofilm reactor (SBBR) for sewage treatment in this paper. The removals of suspended solid (SS), chemical oxygen demand (COD) and NH3-N in sewage were studied. The average removal efficiencies of SS, COD and NH3-N with luffa cylindrical sponge were 96%, 89% and 90%, respectively, while these with plastic sponge were 94%, 83% and 80%, respectively. As a natural, cheap and environment friendly biocarrier, luffa cylindrical sponge was easy to get a biofilm with enriched microbes during the first few days of sewage treatment. It was much more suitable as a carrier than the plastic sponge for SBBR.


2020 ◽  
Vol 81 (9) ◽  
pp. 1951-1960 ◽  
Author(s):  
C. S. Cabral ◽  
A. L. Sanson ◽  
R. J. C. F. Afonso ◽  
C. A. L. Chernicharo ◽  
J. C. Araújo

Abstract Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.


2017 ◽  
Vol 30 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Thi Thu Nga Vu ◽  
Manon Montaner ◽  
Christelle Guigui

Wastewater effluents can be treated by an integrated membrane system combining membrane bioreactor (MBR) and reverse osmosis (RO) for effective removal of micropollutants in the field of high-quality water reuse. However, discharging the RO concentrate waste stream directly into the natural environment could lead to serious problems due to the toxic components contained in the concentrates (micropollutants, salts, organic matter). A possible solution could be the recirculation of RO concentrate waste to the MBR. However, such an operation should be studied in detail since the recirculation of non-biodegradable organic matter or high concentrations of salts and micropollutants could directly or indirectly contribute to MBR membrane fouling and modification of the biodegradation activity. In this context, the work reported here focused on the recirculation of such concentrates in an MBR, paying specific attention to MBR membrane fouling. Lab-scale experiments were performed on a continuous MBR-RO treatment line with RO concentrate recirculation. The main goal was to determine the recovery of the RO unit and of the global process that maintained good process performance in terms of biodegradation and MBR fouling. The results demonstrate that the impact of the toxic flow on activated sludge depends on the recovery of the RO step but the same trends were observed regardless of the organic matter and salt contents of the concentrates: the concentration of proteins increased slightly. Size-exclusion high performance liquid chromatography (HPLC-SEC) was employed to study the effects of RO concentrate on the production of protein-like soluble microbial products (SMPs) and demonstrated a significant peak of protein-like substances corresponding to 10-100 kDa and 100-1 000 kDa molecules in the supernatant. Thus a significant increase in the propensity for sludge fouling was observed, which could be attributed to the increased quantity of protein-like substances. Finally, the effect of the concentrate on sludge activity was studied and no significant effect was observed on biodegradation, indicating that the return of the concentrate to the MBR could be a good alternative.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 431-438 ◽  
Author(s):  
Y. Watanabe ◽  
D. Y. Bang ◽  
K. Itoh ◽  
K. Matsui

This paper concerns simultaneous nitrification and denitrification in a completely mixed bio-reactor with partially and fully submerged rotating biological contactors. The bio-reactor is designed to cause the nitrification and denitrification in partially and fully submerged biofilms, respectively. An experimental investigation was made into the effect of organic material and ratio of influent organic carbon to ammonia nitrogen concentrations(C/N ratio) on the efficiency of simultaneous nitrification and denitrification in the bio-reactor. Settled municipal wastewater and synthetic wastewater containing ammonia nitrogen and organic material such as acetate, ethylene-glycol, phenol and poly-vinyl-alcohol(PVA) were fed into the experimental units. A biofilm dominated by nitrifiers developed on the partially submerged contactors, while a biofilm dominated by heterotrophs developed on the fully submerged contactors. A micro-aerobic environment was formed and biological denitrification occurred in the submerged biofilm. In the municipal wastewater treatment where the influent C/N ratio was around 3.5, the maximum nitrogen removal efficiency was about 60 %. Acetate and ethlene-glycol were effectively used as the organic source of the denitrification. The ability to aerobically degrade PVA was induced by phenol. Once the bacteria inhibiting the biofilm gained the ability to degrade PVA, PVA became an effective organic source of the denitrification.


2019 ◽  
Vol 80 (8) ◽  
pp. 1512-1523
Author(s):  
Weiwei Ma ◽  
Yuxing Han ◽  
Wencheng Ma ◽  
Hongjun Han ◽  
Chunyan Xu ◽  
...  

Abstract A simultaneous nitrification and denitrification (SND) bioaugmention system with Pseudomonas sp. HJ3 inoculated was established to explore the potential of simultaneous phenol and nitrogen removal in coal gasification wastewater (CGW). When the concentration of influent chemical oxygen demand (COD) and total phenols (TPh) was 1,765.94 ± 27.43 mg/L and 289.55 ± 10.32 mg/L, the average removal efficiency of COD and TPh at the stable operating stage reached 64.07% ± 0.76% and 74.91% ± 0.33%, respectively. Meanwhile, the average removal efficiency of NH4+-N and total nitrogen (TN) reached 67.96% ± 0.17% and 57.95% ± 0.12%, respectively. The maximum SND efficiency reached 83.51%. Furthermore, SND bioaugmentation performed with good nitrification tolerance of phenol shock load and significantly reduced toxic inhibition of organisms. Additionally, the microbial community analysis indicated that Pseudomonas sp. HJ3 was the predominant bacterium in the SND bioaugmentation system. Moreover, the indigenous nitrogen removal bacteria such as Thauera, Acidovorax and Stenotrophomonas were enriched, which further enhanced the nitrogen removal in the SND bioaugmentation system. The results demonstrated the promising application of SND bioaugmentation for enhancing simultaneous phenol and nitrogen removal in CGW treatment.


2011 ◽  
Vol 64 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Levent Gürel ◽  
Hanife Büyükgüngör

The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.


Sign in / Sign up

Export Citation Format

Share Document