scholarly journals Control charts for monitoring drip irrigation with different hydraulic heads

Author(s):  
Allan Remor Lopes ◽  
Marcio Antonio Vilas Boas ◽  
Felix Augusto Pazuch ◽  
Diane Aparecida Ostroski ◽  
Marta Juliana Schmatz

This study monitored a drip irrigation system with different hydraulic heads, using control charts. The study included 25 tests, and was conducted at the Experimental Nucleus of Agricultural Engineering of the State University of Western Paraná, located in the municipality of Cascavel, Paraná. The drip irrigation system was operated by gravity, and had four hydraulic heads (10, 11, 12 and 15 kPa). The uniformity of the system was determined based on uniformity distribution. Uniformity monitoring was performed using Shewhart and exponentially weighted moving-average (EWMA) control charts. An increase in the hydraulic head increased uniformity. The use of 12 and 15 kPa hydraulic heads yielded good performance, whereas 10 and 11 kPa yielded regular performance. The use of control charts proved to be efficient; the Shewhart control chart was more robust, whereas the EWMA control chart, which indicated trends and deviations not shown by Shewhart control charts, was more sensitive.

2021 ◽  
Vol 10 (11) ◽  
pp. e581101119867
Author(s):  
Soni Willian Haupenthal ◽  
Marcio Antonio Vilas Boas ◽  
Jair Antonio Cruz Siqueira ◽  
Luciene Kazue Tokura ◽  
Lais Fernanda Juchem do Nascimento

This work aimed to evaluate a microsprinkler irrigation system using photovoltaic energy without energy storage. The influence of photovoltaic pumping on irrigation was evaluated from the Emission Uniformity, Shewhart control charts and Process Capacity. The experiment consisted of two amorphous photovoltaic panels connected in parallel, directly connected to a water pump, where the flow of the pumping system was carried out through a ½” tube (main line), to the irrigation system composed of four microsprinklers. The voltage and current parameters were collected, and the power of the photovoltaic system was calculated, while for the irrigation system the pressures of the four microsprinklers were measured to later calculate the flow rate of the irrigation system. The experiment was conducted at the State University of Western Paraná, UNIOESTE, where 25 days of collection were carried out, in the open, at four different times, from 10:00 am to 11:00 am, from 11:05 am to 12:05 pm, from 2:00 pm to 3:00 pm and from 3:05 pm to 4:05 pm . Power generation presented a low coefficient of variation throughout the day, which resulted in flow and pressure stability, culminating in an Emission Uniformity (UE) value qualified as excellent (93.66%) according to the ASAE. The values of energy generation, flow, pressure, and emission uniformity presented a Process Capacity (CP) value above 1.33, defining the process as capable and adequate throughout the analyzed period.


Technologies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 108 ◽  
Author(s):  
Muhammad Naveed ◽  
Muhamma Azam ◽  
Nasrullah Khan ◽  
Muhammad Aslam

In the present paper, we propose a control chart based on extended exponentially weighted moving average (EEWMA) statistic to detect a quick shift in the mean. The mean and variance expression of the proposed EEWMA statistic are derived. The proposed EEWMA statistic is unbiased and simulation results show a smaller variance as compared to the traditional EWMA. The performance of the proposed control chart with the existing chart based on the EWMA statistic is evaluated in terms of average run length (ARL). Various tables were constructed for different values of parameters. The comparison of the EEWMA control chart with the traditional EWMA and Shewhart control charts illustrates that the proposed control chart performs better in terms of quick detection of the shift. The working procedure of the proposed control chart was also illustrated by simulated and application data.


2018 ◽  
Vol 8 (5) ◽  
pp. 3360-3365 ◽  
Author(s):  
N. Pekin Alakoc ◽  
A. Apaydin

The purpose of this study is to present a new approach for fuzzy control charts. The procedure is based on the fundamentals of Shewhart control charts and the fuzzy theory. The proposed approach is developed in such a way that the approach can be applied in a wide variety of processes. The main characteristics of the proposed approach are: The type of the fuzzy control charts are not restricted for variables or attributes, and the approach can be easily modified for different processes and types of fuzzy numbers with the evaluation or judgment of decision maker(s). With the aim of presenting the approach procedure in details, the approach is designed for fuzzy c quality control chart and an example of the chart is explained. Moreover, the performance of the fuzzy c chart is investigated and compared with the Shewhart c chart. The results of simulations show that the proposed approach has better performance and can detect the process shifts efficiently.


2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Olorunwa Eric Omofunmi ◽  
Oluwaseun Ayodele Ilesanmi ◽  
Toluwalase Orisabinone

Experiment was carried out in the department of Agricultural and Bioresources Engineering, during the period of August to October, 2017. The hydraulic performance of a developed drip irrigation system was assessed. The experimental work was conducted on field with irrigated field area of 7 m x 3 m and lateral spacing was 0.35 m. Sixty (60) hospital drip sets (given sets) were used for the experiment as improved emitters. Volumetric method was used to determine application rate (PR) and emitters discharge. The emission uniformity, emitter flow variation, co-efficient of uniformity and co-efficient of variation were determined accordance with the equations described by the American Society of Agricultural Engineering (ASAE). Soil chemical properties were determined accordance with the American Public Health Association (APHA). The findings revealed that the soil in the area is classified as sand clay loam and normal soil. Results indicated that the mean and standard deviation of the emitters were 9.639 L/hr and 0.07 L/hr respectively. There were no emitters clogging. The emitter flow variation was 2.5 % and less than 10 % which was desirable range, while coefficient of variation was 0.07 and less than 0.11 which was marginal. The application rate was 17 mm hr-1 which was within the recommended range of 15 – 25 mm hr-1. The emission uniformity and coefficient of uniformity were 99.4% and 99.2% respectively, which shows that the system was well-designed. This finding indicated that hospital drip sets proved to the high quality. Therefore, it can be used as standard emitter.


2011 ◽  
Vol 42 (1) ◽  
pp. 1-9
Author(s):  
Jared Townsley ◽  
Justin R Chimka

We describe the discovery of how a traditional control chart for the Palmer Drought Severity Index (PDSI) to detect drought compares favourably to a theoretically appropriate statistical (logistic regression) model of drought as a function of PDSI. Our empirical results are based on monthly observations of PDSI, precipitation and temperature made in Kansas since 1895. Results from the study suggest that a relatively simple statistical approach based on Shewhart control charts may provide a more accessible method for relevant government agencies to predict droughts, improving resource management and preparation. Moreover, utilizing such an approach over more sophisticated methods may come at little expense regarding prediction errors.


2016 ◽  
Vol 13 (10) ◽  
pp. 7036-7039
Author(s):  
Nawal G Alghamdi ◽  
Muhammad Aslam

In recent years research on the application of Shewhart control charts in evaluating the performance of educational programs have gain sufficient grounds. These control charts aid in process understanding and identify changes that indicate either improvement or deterioration in quality of the program. Current research proposes control charts using repetitive sampling on the data taken from Weber State University’s construction management program, which uses the Associate Constructor Level 1 exam as an assessment tool. A code was developed to run the proposed control charts. Both the traditional and proposed charts were plotted using R software. The results indicate that the proposed control charts are comparatively more efficient than the traditional control charts in assessment of educational programs and minimizing false positives. At the end comparison of the benchmark—pass rate and traditional control chart with the proposed control chart has also been elucidated so that the proposed control charts may be readily employed in evaluating any educational program by academic counsellors.


2017 ◽  
Vol 17 (1) ◽  
pp. 129-137
Author(s):  
Janusz Niezgoda

Abstract This article presents the proposed application of one type of the modified Shewhart control charts in the monitoring of changes in the aggregated level of financial ratios. The control chart x̅ has been used as a basis of analysis. The examined variable from the sample in the mentioned chart is the arithmetic mean. The author proposes to substitute it with a synthetic measure that is determined and based on the selected ratios. As the ratios mentioned above, are expressed in different units and characters, the author applies standardisation. The results of selected comparative analyses have been presented for both bankrupts and non-bankrupts. They indicate the possibility of using control charts as an auxiliary tool in financial analyses.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 356 ◽  
Author(s):  
Muhammad Aslam ◽  
G. Rao ◽  
Ali AL-Marshadi ◽  
Chi-Hyuck Jun

Control charts are considered as powerful tools in detecting any shift in a process. Usually, the Shewhart control chart is used when data follows the symmetrical property of a normal distribution. In practice, the data from the industry may follow a non-symmetrical distribution or an unknown distribution. The average run length (ARL) is a significant measure to assess the performance of the control chart. The ARL may mislead when the statistic is computed from an asymmetric distribution. To handle this issue, in this paper, an ARL-unbiased hybrid exponentially weighted moving average proportion (HEWMA-p) chart is proposed for monitoring the process variance for a non-normal distribution or an unknown distribution. The efficiency of the proposed chart is compared with the existing chart in terms of ARLs. The proposed chart is more efficient than the existing chart in terms of ARLs. A real example is given for the illustration of the proposed chart in the industry.


Irriga ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 357-366
Author(s):  
Allan Remor Lopes ◽  
Marcio Antonio Vilas Boas ◽  
Felix Augusto Pazuch ◽  
Luciano Dalla Corte ◽  
Benedito Martins Gomes ◽  
...  

UNIFORMITY OF DRIP IRRIGATION SYSTEM WITH LIQUID PEAT ON DIFFERENT SLOPES     ALLAN REMOR LOPES1; MARCIO ANTONIO VILAS BOAS1; FELIX AUGUSTO PAZUCH1; LUCIANO DALLA CORTE1; BENEDITO MARTINS GOMES1; ROSEBEL TRINDADE CUNHA PRATES2   1 Programa de Pós-Graduação em Engenharia Agrícola (PGEAGRI) – Departamento de Recursos Hídricos e Saneamento Ambiental (RHESA), Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária 2069, Jardim Universitário, CEP: 85819-110, Cascavel, Paraná, Brasil, [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rodovia PR 182 Km 02, Francisco Beltrão, Paraná, Brasil, [email protected]     1 ABSTRACT   The use of liquid peat is an alternative to use of mineral fertigation However, it is necessary to monitor the uniformity of this organomineral fertilizer in order to obtain its adequate use, so the organomineral fertilizer can produce better quality crops. This study aimed to evaluate the uniformity of a drip fertigation system with liquid peats on different slopes. The experiment was carried out on a test bench, where the flow rate of the drippers was determined and subsequently its uniformity was calculated using the Christiansen uniformity coefficient (CUC) fot the treatments in level (0%), uphill (2%) and downhill (2%). The experimental statistics were performed by analysis of variance (ANOVA) and Tukey’s test at 5% probability to compare uniformity, in addition to the analysis of the process by Shewhart and CUSUM control charts. Liquid peat showed excellence in its uniformity (>90%) while used for drip irrigation systems. The liquid peat applied at the level slope was the most uniform, followed by upslope and downslope treatments, respectively. Through Shewhart and CUSUM control charts, it was possible to affirm that fertigation with liquid peat in level obtained a better performance.   Keywords: control chart, uniformity, organomineral fertilizer, microirrigation.     LOPES, A. R.; VILAS BOAS, M. A.; PAZUCH, F. A.; DALLA CORTE, L.; GOMES, B. M.; PRATES, R. T. C. UNIFORMIDADE DE SISTEMA DE IRRIGAÇÃO POR GOTEJAMENTO COM TURFA LÍQUIDA EM DIFERENTES INCLINAÇÕES     2 RESUMO   O uso da turfa líquida é uma alternativa ao uso da fertirrigação mineral. No entanto, é necessário o monitoramento da uniformidade deste fertilizante organomineral para obter seu uso adequado, assim o fertilizante organomineral pode produzir culturas de melhor qualidade. O objetivo deste estudo foi avaliar a uniformidade de um sistema de fertirrigação por gotejamento com turfa líquida em diferentes inclinações. O experimento foi conduzido em uma bancada de testes, onde a vazão dos gotejadores foi determinada e consequentemente sua uniformidade pelo Coeficiente de uniformidade de Christiansen (CUC) para os tratamentos em nível (0%), aclive (2%) e declive (2%). A estatística experimental foi determinada pela análise de variância (ANOVA) e teste de Tukey a 5% de probabilidade na comparação da uniformidade, complementando os gráficos de controle de Shewhart e CUSUM. A turfa líquida apresentou excelência na sua uniformidade (> 90%) em sistemas de irrigação por gotejamento. A turfa aplicada em nível (0%) foi a mais uniforme, seguido pelos tratamentos em aclive e declive, respectivamente. Através dos gráficos de controle de Shewhart e CUSUM foi possível afirmar que a fertirrigação em nível obteve uma melhor performance.   Palavras-chave: gráficos de controle, uniformidade, fertilizante organomineral, microirrigação.


Irriga ◽  
2018 ◽  
Vol 1 (01) ◽  
pp. 56 ◽  
Author(s):  
JIAM PIRES FRIGO ◽  
MARCIO ANTONIO VILAS BOAS ◽  
JIANICE PIRES FRIGO ◽  
ELISANDRO PIRES FRIGO

COMPARAÇÃO ENTRE GRÁFICOS DE CONTROLE DE SHEWHART, CUSUM E MMEP NO PROCESSO DE IRRIGAÇÃO POR ASPERSÃO CONVENCIONAL  JIAM PIRES FRIGO1; MARCIO ANTONIO VILAS BOAS2; JIANICE PIRES FRIGO2 E ELISANDRO PIRES FRIGO3 1 Instituto Latino-Americano de Tecnologia, Infraestrutura e Território - ILATIT (UNILA), Av. Tancredo Neves, 3838 - Porto Belo, CEP 85867-970, Foz do Iguaçu, PR, Fone (45)99993 4783, e‑mail:[email protected] Centro de Ciências Exatas e Tecnológicas, Programa de Pós Graduação em Engenharia Agrícola (Unioeste), R. Universitária, 2069 - Jardim Universitário CEP 85819-110, Cascavel-PR3 Universidade Federal do Paraná, Campus Palotina  R. Pioneiro, 2153 - Dallas, CEP 85950-000, Palotina-PR  1 RESUMO O objetivo deste estudo foi comparar os resultados da utilização dos gráficos de controle de Shewhart para medidas individuais, com os gráficos de controle média móvel exponencialmente ponderada (MMEP) e soma cumulativa (CUSUM), aplicados no controle de qualidade da irrigação. Foram realizados 60 ensaios de irrigação em um sistema por aspersão convencional. As análises do processo de controle de qualidade do sistema de irrigação foram realizadas por meio dos gráficos de Shewhart (Xbarra), gráficos MMEP e CUSUM. Todos os procedimentos para os ensaios de uniformidade da irrigação foram realizados conforme recomendação NBR ISO 7749-2 (ABNT, 2000). Para a avaliação do sistema foi utilizado o Coeficiente de Uniformidade de Christiansen (CUC). O gráfico de controle MMEP apresentou-se bastante suscetível quando utilizado em dados auto correlacionados, com ocorrências de alarmes falsos. Para dados independentes (pelo modelo ARIMA), o gráfico CUSUM foi mais sensível ao detectar as variações ocorridas na irrigação devido à velocidade do vento, quando comparado aos gráficos MMEP e Shewhart para os mesmos dados. Na irrigação por aspersão, relacionando CUC com velocidade do vento, o gráfico de Shewhart foi mais indicado pela simplicidade, robustez e facilidade de interpretação, mesmo na presença de dados que violam a suposição de independência. Os gráficos de controle de Shewhart, MMEP e CUSUM provaram serem ótimas ferramentas estatísticas no estudo da irrigação por aspersão convencional, demonstrando muito bem a variabilidade no processo. Palavras-Chave: água, vento, Coeficiente de Christiansen, Controle de qualidade.  FRIGO, J.P.; VILAS BOAS, M.A.; FRIGO, J.P.; FRIGO, E.P.COMPARISON BETWEEN SHEWHART CONTROL CHARTS, CUSUM AND MMEP IN PROCESS OF CONVENTIONAL IRRIGATION SPRINKLER  2 ABSTRACT This study aimed to compare the results of Shewhart control charts use for individual measures with exponentially weighted moving average (MMEP) and cumulative sum (CUSUM) control charts applied in quality control of conventional sprinkler irrigation. Sixty irrigation trials were set up in a conventional sprinkler system. The analyses of the quality control process of the irrigation system were performed by means of Shewhart charts (Xbarra) charts, MMEP and CUSUM. All procedures for testing uniformity of irrigation were performed as recommended by ISO 7749-2 (ABNT, 2000). For the evaluation of the system, it was used Christiansen Uniformity Coefficient (CUC). The control chart MMEP showed to be quite susceptible when used in auto correlated data with instances of false alarms. For independent data (the ARIMA model), the CUSUM tabular chart was more sensitive to detect variations in irrigation due to wind speed, when compared to MMEP and Shewhart charts for the same data. In sprinkler irrigation, relating CUC with wind speed, the Shewhart chart was better due to such features as simplicity, robustness and easiness of interpretation, even in the presence of data that violate the assumption of independence. The Shewhart control charts, CUSUM and MMEP statistics proved to be great tools in the study of irrigation sprinkler, demonstrating very well the variability in the process. Keywords: water, wind, Christiansen coefficient, control charts, Quality control.


Sign in / Sign up

Export Citation Format

Share Document