scholarly journals Effect of Diet Supplementation on the Expression of Bovine Genes Associated with Fatty Acid Synthesis and Metabolism

2010 ◽  
Vol 4 ◽  
pp. BBI.S4168 ◽  
Author(s):  
Sandeep J. Joseph ◽  
Kelly R. Robbins ◽  
Enrique Pavan ◽  
Scott L. Pratt ◽  
Susan K. Duckett ◽  
...  

Conjugated linoleic acids (CLA) are of important nutritional and health benefit to human. Food products of animal origin are their major dietary source and their concentration increases with high concentrate diets fed to animals. To examine the effects of diet supplementation on the expression of genes related to lipid metabolism, 28 Angus steers were fed either pasture only, pasture with soybean hulls and corn oil, pasture with corn grain, or high concentrate diet. At slaughter, samples of subcutaneous adipose tissue were collected, from which RNA was extracted. Relative abundance of gene expression was measured using Affymetrix GeneChip Bovine Genome array. An ANOVA model nested within gene was used to analyze the background adjusted, normalized average difference of probe-level intensities. To control experiment wise error, a false discovery rate of 0.01 was imposed on all contrasts. Expression of several genes involved in the synthesis of enzymes related to fatty acid metabolism and lipogenesis such as stearoyl-CoA desaturase (SCD), fatty acid synthetase (FASN), lipoprotein lipase (LPL), fatty-acyl elongase (LCE) along with several trancription factors and co-activators involved in lipogenesis were found to be differentially expressed. Confirmatory RT-qPCR was done to validate the microarray results, which showed satisfactory correspondence between the two platforms. Results show that changes in diet by increasing dietary energy intake by supplementing high concentrate diet have effects on the transcription of genes encoding enzymes involved in fat metabolism which in turn has effects on fatty acid content in the carcass tissue as well as carcass quality. Corn supplementation either as oil or grain appeared to significantly alter the expression of genes directly associated with fatty acid synthesis.

1997 ◽  
Vol 77 (1) ◽  
pp. 107-121 ◽  
Author(s):  
Masakazu Murata ◽  
Takashi Ide ◽  
Kenji Hara

The activities of hepatic enzymes of fatty acid synthesis and oxidation were compared in rats fed on diacylglycerol and triacylglycerol. In the first trial, rats were fed on diacylglycerol or triacylglycerol (rapeseed oil) for 14 d. The diacylglycerol preparation contained 65·2 g and 32·6 g fatty acids/100 g total fatty acids as 1,3-species and 1,2-species respectively. Fatty acid compositions of these dietary lipids were similar. Dietary acylglycerols were added to experimental diets to provide the same amounts of fatty acids (93·9 g/kg diet). Dietary diacylglycerol compared with triacylglycerol significantly reduced the concentrations of serum and liver triacylglycerol. The activities of enzymes of fatty acid synthesis (fatty acid synthetase, glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and malic enzyme (EC 1.1.1.40)) were significantly lower in rats fed on diacylglycerol than in those fed on triacylglycerol. In contrast, the rates of mitochondrial and peroxisomal oxidation of palmitoyl-CoA in liver homogenates were higher in rats fed on diacylglycerol than in those fed on triacylglycerol. In the second trial, varying amounts of dietary triacylglycerol were replaced by diacylglycerol while the dietary fatty acid content was maintained (93·9 g/kg diet). After 21 d of the feeding period the significant reductions in serum and liver triacylglycerol levels were confirmed in groups of rats fed on the diets in which diacylglycerol supplied more than 65·8 g fatty acids/kg diet (65·8 and 93·9 g/kg). Reductions in the activities of enzymes of fatty acid synthesis and increases in palmitoyl-CoA oxidation rates by both mitochondrial and peroxisomal pathways were also apparent when diacylglycerol replaced triacylglycerol in diets to supply more than 65·8 g fatty acid/kg. Increasing dietary levels of diacylglycerol also progressively increased the activities of enzymes involved in the β-oxidation pathway (carnitine palmitoyltransferase (EC 2.3.1.21), acyl-CoA dehydrogenase (EC 1.3.99.3), acyl-CoA oxidase (EC 1.3.3.6), enoyl-CoA hydratase (EC 4.2.1.17), 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and Δ3,Δ2-enoyl-CoA isomerase (EC 5.3.3.8)) in the liver. These results suggest that alteration of fatty acid metabolism in the liver is a factor responsible for the serum triacylglycerol-lowering effect of dietary diacylglycerol.


1983 ◽  
Vol 214 (2) ◽  
pp. 443-449 ◽  
Author(s):  
P Grimaldi ◽  
C Forest ◽  
P Poli ◽  
R Negrel ◽  
G Ailhaud

ob17 cells convert into adipose-like cells when maintained in the presence of physiological concentrations of insulin and tri-iodothyronine. After this conversion, insulin removal from differentiated ob17 cells gives within 24-48 h a large decrease in fatty acid synthetase, glycerol 3-phosphate dehydrogenase and acid:CoA ligase activities, as well as in the rate of fatty acid synthesis determined by [14C]acetate incorporation into lipids. All parameters are restored by insulin addition to initial values within 24-48 h. Dose-response curves of insulin on the restoration of glycerol 3-phosphate dehydrogenase activity and of fatty acid synthesis give half-maximally effective concentrations close to 1 nM, in agreement with the affinity for insulin of the insulin receptors previously characterized in these cells. Immunotitration experiments indicate that the changes in the specific activity of fatty acid synthetase are due to parallel changes in the cellular enzyme content. Therefore the ob17 cell line should be a useful model to study the long-term effects of insulin on the modulation of lipid synthesis in adipose cells.


1984 ◽  
Vol 52 (1) ◽  
pp. 131-137 ◽  
Author(s):  
G. R. Herzberg ◽  
Minda Rogerson

1. The effect of feeding casein, lactalbumin, soya-bean protein, gluten or gelatin on hepatic lipogenesis and the levels of hepatic fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (EC 1. 1. 1.49; G6PD), malic enzyme (EC 1. 1. 1.40; ME) ATP-citrate lyase (EC 4. 1. 3. 8; CL), acetyl CoA carboxylase (EC 6.4.1.2; ACCx) and glucokinase (EC 2. 7. 1. 2; GK) was examined in young growing rats.2. The total activities of ACCx, FAS, CL, GK, G6PD, GK, ME and fatty acid synthesis in vivo were positively correlated with protein quality.3. The specific activities of ACCx, FAS, CL, G6PD and fatty acid synthesis in vivo were positively correlated with protein quality.4. The specific activities of GK and ME were unrelated to protein quality.5. The results demonstrate a dissociation between ME and hepatic lipogenesis and suggest a role for the NADPH generated by ME which is not related to the needs of fatty acid synthesis.


1981 ◽  
Vol 45 (3) ◽  
pp. 529-538 ◽  
Author(s):  
G. R. Herzberg ◽  
Minda Rogerson

1. The effect of varying dietary levels of casein (40–140 g/kg) on hepatic lipogenesis and the levels of hepatic fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (EC 1.1.1.49; G6PD), malic enzyme (EC 1.1.1.40; ME), citrate cleavage enzyme (EC 4.1.3.8;CCE), acetyl CoA carboxylase (EC 6.4.1.2; AcCx), glucokinase (EC 2.7.1.2; GK), and pyruvate dehydrogenase (PDH) was examined in young, growing rats.2. The activities of AcCx, FAS, G6PD and in vivo fatty acid synthesis were generally found to increase with increased dietary protein.3. The levels of GK and PDH were not related to dietary protein.4. ME decreased with increasing dietary protein.5. The results demonstrate a dissociation between hepatic fatty acid synthesis and ME and suggest that when rats consume low-protein diets the NADPH needed for fatty acid synthesis is generated primarily by ME but that as the level of dietary protein is increased the contribution of ME is reduced while that of the phosphogluconate pathway becomes more important.


2008 ◽  
Vol 86 (7) ◽  
pp. 416-423 ◽  
Author(s):  
Valéria E. Chaves ◽  
Danúbia Frasson ◽  
Maria E.S. Martins-Santos ◽  
Luiz C.C. Navegantes ◽  
Victor D. Galban ◽  
...  

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)–glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG–glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.


1988 ◽  
Vol 251 (2) ◽  
pp. 547-551 ◽  
Author(s):  
J S Wilson ◽  
M A Korsten ◽  
L P Donnelly ◽  
P W Colley ◽  
J B Somer ◽  
...  

Administration of ethanol as part of a nutritionally adequate liquid diet to female Wistar rats was found to depress markedly incorporation of labelled glucose into adipose-tissue acylglycerol fatty acids. Similar results with labelled pyruvate and acetate suggested inhibition of the fatty-acid-synthesis pathway at, or distal to, the acetyl-CoA carboxylase step. Activities of acetyl-CoA carboxylase and fatty acid synthetase were markedly lower in ethanol-fed animals. The activity of another lipogenic enzyme, phosphatidate phosphohydrolase, was not affected by chronic ethanol feeding. These findings suggest that chronic ethanol administration has marked effects on adipose-tissue lipogenesis.


1980 ◽  
Vol 43 (3) ◽  
pp. 571-579 ◽  
Author(s):  
G. R. Herzberg ◽  
N. Janmohamed

The effect of varying dietary levels of maize oil and tripalmitin (0–250 g fat/kg) on hepatic lipogenesis and the levels of hepatic fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (EC 1.1.1.49; G6PD), malic enzyme (EC 1.1.1.38, 1.1.1.39, 1.1.1.40; ME) and glucokinase (EC 2.7.1.2; GK) was examined in meal-fed mice.2. Meal-fed mice compared to mice fed ad lib. show enhanced hepatic lipogenesis as demonstrated by an increased rate of in vivo fatty acid synthesis and increased levels of FAS, ME and G6PD. The level of GK in meal-fed mice was unchanged by meal feeding.3. Maize oil more effectively reduced in vivo hepatic lipogenesis than tripalmitin in meal-fed mice.4. Maize oil more effectively reduced the hepatic levels of FAS, G6PD, ME and GK than tripalmitin in meal-fed mice.5. The increased inhibition by maize oil is observed at all levels of fat in the diet investigated and has been shown not to be due to decreased carbohydrate intake nor to differences between the absorption of maize oil and tripalmitin.


1985 ◽  
Vol 226 (2) ◽  
pp. 551-556 ◽  
Author(s):  
K A Walker ◽  
J L Harwood

The synthesis of fatty acids de novo from [2-14C]malonyl-CoA was studied in fractions from lettuce (Lactuca sativa) and pea (Pisum sativum) chloroplasts. When lettuce chloroplasts were subjected to osmotic lysis, disintegration through a Yeda press and high-speed centrifugation, essentially all of the fatty-acid-synthetic activity was found to be soluble. The distribution of the activity in various chloroplast fractions was similar to that of soluble marker enzymes such as ribulose-1,5-bisphosphate carboxylase and NADP+-linked glyceraldehyde-3-phosphate dehydrogenase. Marked differences were apparent in the quality of products from fatty acid synthesis de novo in the various fractions of chloroplasts. Thus soluble fractions produced predominantly stearate, whereas those containing membranes produced a greater proportion of palmitate. In pea chloroplasts, osmotic lysis released almost all of the fatty acid synthetase into the stromal fraction. In this instance, no major alterations in the products of fatty acid synthesis were observed. The fatty-acid-synthetic activity of the stromal fraction was still soluble after prolonged ultracentrifugation. The results show clearly the soluble nature of fatty acid synthesis de novo in lettuce and pea chloroplasts. Thus fatty acid synthesis measured in microsomal fractions from such plant tissues is not due to the presence of chloroplastic membranes.


1976 ◽  
Vol 160 (3) ◽  
pp. 683-691 ◽  
Author(s):  
J Knudsen ◽  
S Clark ◽  
R Dils

1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000±500 (mean±S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document