Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation

2012 ◽  
Vol 92 (3) ◽  
pp. 395-408 ◽  
Author(s):  
J. A. Tekippe ◽  
A. N. Hristov ◽  
K. S. Heyler ◽  
V. D. Zheljazkov ◽  
J. F. S. Ferreira ◽  
...  

Tekippe, J. A., Hristov, A. N., Heyler, K. S., Zheljazkov, V. D., Ferreira, J. F. S., Cantrell, C. L. and Varga, G. A. 2012. Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation. Can. J. Anim. Sci. 92: 395–408. In this study, plants (14) and essential oils (EO; 88) from plants that are naturalized to, or can be successfully grown in North America were evaluated in a batch culture in vitro screening experiments with ruminal fluid as potential anti-methanogenic additives for ruminant diets. Essential oils were tested at four inclusion levels: 0 (blank), 10, 50, and 100 mg L−1and plants were tested at 313, 1250, 2500, and 5000 mg L−1final incubation medium concentration. Compared with the blank, two of the EO increased acetate concentration (8 to 10%), 11 EO increased propionate concentration (9 to 23%), 10 EO increased butyrate concentration (24 to 29%), and three EO reduced methane production [20 to 30%; Anethum graveolens (dill weed oil), Lavandula latifolia, and Ocimum basilicum #7 accession]. Four EO decreased and one increased neutral detergent fiber (NDF) degradability. Three plants increased acetate concentration (8 to 12%), two increased propionate concentration (16%), and one (Origanum vulgare) decreased methane production (31%). Eight of the plants increased NDF degradability at various inclusion levels. Overall, these results indicate that some EO, or EO-producing plants could have a potential anti-methanogenic effect. Further research is needed to verify these results in vivo in long-term experiments.

2015 ◽  
Vol 95 (3) ◽  
pp. 425-431
Author(s):  
Jacques B. Kouazounde ◽  
Joachim D. Gbenou ◽  
Maolong He ◽  
Túlio Jardim ◽  
Long Jin ◽  
...  

Kouazounde, J. B., Gbenou, J. D., He, M., Jardim, T., Jin, L., Wang, Y., Beauchemin, K. A. and McAllister, T. A. 2015. Effects of essential oils from African basil on fermentation of Andropogon gayanus grass in the Artificial Rumen (RUSITEC). Can. J. Anim. Sci. 95: 425–431. Essential oils (EO) from African basil (Ocimum gratissimum) have shown the potential to modify rumen microbial fermentation and reduce ruminal methane production from grass forages in in vitro batch cultures. However, it is not known whether the effects of EO on rumen microbial fermentation attenuate over time. The objective of this study was to examine the effects of African basil EO at 0 (control), 100, 200 and 400 mg L−1incubation medium on microbial fermentation and methane production in the Rumen Simulation Technique (RUSITEC) using Andropogon gayanus grass as a substrate. African basil EO quadratically affected (P<0.05) methane production gas production and the pH of fermenter liquid. Total volatile fatty acid (VFA) production was linearly decreased (P<0.05) by African basil EO along with a shift in VFA profile towards less propionate and more acetate and butyrate. African basil EO quadratically altered (P<0.05) apparent dry matter, neutral detergent fiber digestibility,15N incorporation into total microbial protein and the total production of microbial protein. This study confirms that EO from African basil quadratically affected methane emissions arising from the ruminal fermentation of A. gayanus grass mainly by reducing overall digestibility of the forage.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 109
Author(s):  
Sukruthai Sommai ◽  
Anusorn Cherdthong ◽  
Chanon Suntara ◽  
Sarong So ◽  
Metha Wanapat ◽  
...  

Two experiments were conducted under this study: Experiment 1 was to study production yield, chemical composition, and in vitro degradability of Brazilian spinach (Alternanthera sissoo; BS) leaf and leaf + leaf-stalk at various maturity ages of 15, 30, 45, and 60 days after plantation and regrowth and Experiment 2 was to evaluate the effect of flavonoid extract from BS leaf and leaf + leaf-stalk and dietary ratios on ruminal gas production, fermentation characteristics, and in vitro degradability. Experiment 1 showed that maturity ages after planting and regrowth increased, the yield significantly increased. Increasing maturity ages significantly (p < 0.05) increased neutral detergent fiber and acid detergent fiber content and decreased crude protein content, total flavonoid (TF) content, and degradability for both leaf and leaf + leaf-stalk. Maturity ages from 15 to 30 days after plantation and regrowth resulted (p < 0.05) the highest TF content and degradability for both leaf and leaf + leaf-stalk. Thus, BS leaf and leaf + leaf-stalk samples from 15 to 30 days of age were used for flavonoid extraction and used in the Experiment 2. Experiment 2 was conducted according to a 3 × 5 factorial experiment. Three roughage to concentrate (R:C) ratios at 50:50, 40:60, and 30:70 were used, and five levels of flavonoid extract (FE) at 0, 10, 20, 30, and 40 mg of substrate dry matter (DM) were supplemented. Experiment 2 showed that R:C ratio and FE had an interaction effect only on acetate to propionate ratio. Varying R:C ratios significantly increased (p < 0.05) in vitro DM degradability, total volatile fatty acids (VFA), and propionate (C3) concentration. FE supplementation linearly (p < 0.05) increased total VFA and C3 concentration and decreased methane production and protozoal population. This study could conclude that FE from BS could effectively modulate ruminal fermentation and decrease methane production. However, in vivo study needs to elucidate in order to validate the present results.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 132-132
Author(s):  
Sergio Calsamiglia ◽  
Maria Rodriguez-Prado ◽  
Gonzalo Fernandez-Turren ◽  
Lorena Castillejos

Abstract In the last 20 years there has been extensive in vitro research on the effects of plant extracts and essential oils on rumen microbial fermentation. The main objectives have been to improve energy metabolism through a reduction in methane emissions and an increase in propionate production; and to improve protein metabolism by reducing proteolysis and deamination. While the positive results from in vitro studies has stimulated the release of commercial products based on blends of essential oils, there is limited in vivo evidence on the rumen fermentation and production performance effects. A literature search was conducted to select in vivo studies where information on rumen fermentation and animal performance was reported. For dairy cattle, we identified 37 studies of which 21 were adequate to test production performance. Ten studies reported increases and 3 decreases in milk yield. For beef cattle, we identified 20 studies with rumen fermentation profile and 22 with performance data. Average daily gain improved in 7 and decreased in 1 study. Only 1 out of 16 studies reported an improvement in feed efficiency. Data indicate that out of more than 500 products tested in vitro, only around 20 have been tested in vivo in different mixtures and doses. The use of statistical approaches will allow to describe the conditions, doses and responses in dairy and beef cattle performance. The search for postruminal effects offers another alternative use. Evidence for effects on the intestinal and systemic effects on the immune system and antioxidant status (i.e., capsicum, garlic, eugenol, cinnamaldehyde curcuma, catechins, anethol or pinene), and in the modulation of metabolic regulation (capsicum, cinnamaldehyde, curcuma or garlic) may open the opportunity for future applications. However, stability of the product in the GI tract, description of the mechanisms of action and the impact of these changes on performance needs to be further demonstrated.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2017 ◽  
Vol 100 (11) ◽  
pp. 8881-8894 ◽  
Author(s):  
Rebecca Danielsson ◽  
Mohammad Ramin ◽  
Jan Bertilsson ◽  
Peter Lund ◽  
Pekka Huhtanen

2018 ◽  
Vol 46 (1) ◽  
pp. 14 ◽  
Author(s):  
Weibson Paz Pinheiro André ◽  
Wesley Lyeverton Correia Ribeiro ◽  
Lorena Mayana Beserra de Oliveira ◽  
Iara Tersia Freitas Macedo ◽  
Fernanda Cristina Macedo Rondon ◽  
...  

Background: Gastrointestinal nematodes are one of the major health and economic problem of sheep and goats in the world. The control of these nematodes is carried out conventionally with synthetic anthelminths, which favored the selection of gastrointestinal nematode (GIN) populations multiresistant to anthelmintics. The emergence of anthelmintic resistance has stimulated the search for new alternatives to control small ruminant GIN, standing out the use of plants and their bioactives compounds, such as essential oils (EO). The objective of this review was to present the main characteristics and anthelmintic activity of EO, their isolated compounds and drug delivery systems in the control of GIN.Review: Essential oils are a complex blend of bioactive compounds with volatile, lipophilic, usually odoriferous and liquid substances. EO are composed of terpenes, terpenoids, aromatic and aliphatic constituents. EO has various pharmacological activities of interest in preventive veterinary medicine such as antibacterials, antifungals, anticoccicids, insecticides and anthelmintics. In vitro and in vivo tests are used to validate the anthelmintic activity of EO on GIN. In vitro tests are low cost screening tests that allow the evaluation of the anthelmintic activity of a large amount of bioactive compounds on eggs, first (L1) and third stage larvae (L3), and adult nematodes. The antiparasitic effect of EO is related to its main compound or to the interaction of the compounds. These bioactive compounds penetrate the cuticle of the nematodes by transcuticular diffusion, altering the mechanisms of locomotion, besides causing cuticular lesions. Following in vitro evaluation, the acute and sub-chronic toxicity test should be performed to assess the toxicity of the bioactive compounds and to define the dose to be used in in vivo tests. In vivo tests are more reliable because the anthelmintic effectiveness of bioactive compounds is evaluated after the metabolization process. The metabolization process of the bioactive compounds can generate metabolites that exhibit or not anthelmintic effectiveness. The in vivo tests assessing the anthelmintic effectiveness of bioactive compounds in sheep and goats are the fecal egg count reduction test and the controlled test.  OE promoted reduction of egg elimination in faeces which may be related to cuticular and reproductive alterations in GIN, and reduction of parasite burden in in vivo tests. Due to the promising results obtained with OE in the in vivo tests, interest has been aroused in using nanotechnology as an alternative to increase the bioavailability of OE and consequently, potentializing its anthelmintic effect, reducing the dose and  toxicity of the biocompounds. In addition to nanotechnology, the isolation and chemical modification of compounds isolated from OE have been employed to obtain new molecules with anthelmintic action and understand the mechanism of action of EO on the small ruminant GIN.Conclusion: The use of EO and their compound bioactive in the control of resistant populations of GIN is a promising alternative. The adoption of strategies in which natural products can replace synthetic anthelmintics, such as in dry periods and use synthetic anthelmintics in the rainy season when the population in refugia in the pasture is high, thus reducing the dissemination of GIN resistant populations. As perspective, the evaluation of pharmacokinetics and pharmacodynamics of these natural products should be performed so that one defines treatment protocols that optimize the anthelmintic effect.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 239-248 ◽  
Author(s):  
Anju Benny ◽  
Jaya Thomas

AbstractAlzheimerʼs disease is a multifarious neurodegenerative disease that causes cognitive impairment and gradual memory loss. Several hypotheses have been put forward to postulate its pathophysiology. Currently, few drugs are available for the management of Alzheimerʼs disease and the treatment provides only symptomatic relief. Our aim is to review the relevant in vitro, in vivo, and clinical studies focused toward the potential uses of essential oils in the treatment of Alzheimerʼs disease. Scientific databases such as PubMed, ScienceDirect, Scopus, and Google Scholar from April 1998 to June 2018 were explored to collect data. We have conducted wide search on various essential oils used in different models of Alzheimerʼs disease. Out of 55 essential oils identified for Alzheimerʼs intervention, 28 have been included in the present review. A short description of in vivo studies of 13 essential oils together with clinical trial data of Salvia officinalis, Salvia lavandulifolia, Melissa officinalis, Lavandula angustifolia, and Rosmarinus officinalis have been highlighted. In vitro studies of remaining essential oils that possess antioxidant and anticholinesterase potential are also mentioned. Our literary survey revealed encouraging results regarding the various essential oils being studied in preclinical and clinical studies of Alzheimerʼs disease with significant effects in modulating the pathology through anti-amyloid, antioxidants, anticholinesterase, and memory-enhancement activity.


2018 ◽  
Author(s):  
Ilias Marmouzi ◽  
El Mostafa Karym ◽  
Rachid Alami ◽  
Meryem El Jemli ◽  
Mourad Kharbach ◽  
...  

AbstractBackgroundTherapy combination is defined as disease treatment with two or more medication to acheive efficacy with lower doses or lower toxicity. Regarding its reported toxicities and efficacy, the Essential Oils (EOs) from Syzygium aromaticum (SA) and Pelargonium graveolens (PG) were combined for in vitro and in vivo assays and toxicities.MethodsThe Essential Oils and mixture were tested for in vivo/in vitro antioxidant and anti-inflammatory activities. The assays included the animal model of acute inflammation (carrageenan model), the protective effect on H2O2/Sodium nitroprissude induced stress in Tetrahymena pyriformis, and the in vitro antioxidant assays.ResultsThe chemical analysis of the investigated Oils has lead to the identification of Eugenol (74.06%), Caryophyllene (11.52%) and Carvacrol acetate (7.82%) as the major element in SA; while PG was much higher in Citronellol (30.77%), 10-epi-γ-Eudesmol (22.59%), and Geraniol (13.95%). In our pharmacological screening of samples, both Oils demonstrated good antioxidant effects. In vivo investigation of the antioxidant activity in the protozoa model (T. pyriformis) demonstrated a lesser toxic effect of EOs mixture with no significant differences when oxidative stress markers and antioxidant enzymes (MDA, SOD and CAT) were evaluated. On the other hand the in vivo model of inflammatory response to carrageenan demonstrated a good inhibitory potential of both EOs. The EOs Mixture demonstrated equivalent bioactivity with lower toxic effect and minimal risk for each compound.ConclusionsThe results from this study indicate that EOs mixture from SA and PG demonstrated promising modulatory antioxidant/anti-inflammatory effect, which suggest an efficient association for therapy.


Author(s):  
N.M. Devyatkina ◽  
N.O. Bobrova ◽  
E.M. Vazhnichaya

The oral cavity contains a large number of bacteria, some of which are involved in the development of caries and periodontitis (S. mutans, S. sobrinus, Lactobacilli spp, P. intermedia, P. gingivalis, and T. forythus). The disadvantages of existing antiseptics used in dentistry necessitate the study of antibacterial properties of herbal medicines, and, in particular, of essential oils. The aim of this review is to provide the analysis of literature sources from PubMed and Google Scholar databases related to the effects of essential oils of cloves, mint, thyme, eucalyptus, tea tree and their components on cariogenic and periodontopathic microflora. It was found out that the most in vitro studies evaluated the effects of essential oils or isolated compounds (eugenol, menthol, thymol, carvacrol, eucalyptol, and terpinene-4-ol) on S. mutans, which is considered to be the most cariogenic of oral streptococci, and the researchers limited to defining the susceptibility of the microorganism and effects on biofilm formation. Only in a few studies, the effects of essential oils on the virulence factors of oral pathogens, in particular glycosyl transferase, are represented. Clinical trials of essential oils, their components and combinations confirm the therapeutic potential of these agents in vivo, but raise the question of their effectiveness, taking into account the short-term action, which does not exceed the potency of chlorhexidine. Essential oils of cloves, mint, thyme, eucalyptus, tea tree and their components should be used for treating caries and periodontitis. They are also promising when used as agents of the oral care products, preservatives of the dental medicinal forms, and as remedies for halitosis. With a rational prescription, essential oils can be useful in improving the quality of dental treatment and preventive procedures.


2020 ◽  
Author(s):  
Rafael Muñoz-Tamayo ◽  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan

AbstractBackgroundThe red macroalgae Asparagopsis taxiformis is a potent natural supplement for reducing methane production from cattle. A. taxiformis contains several anti-methanogenic compounds including bromoform that inhibits directly methanogenesis. The positive and adverse effects of A. taxiformis on the rumen microbiota are dose-dependent and operate in a dynamic fashion. It is therefore key to characterize the dynamic response of the rumen microbial fermentation for identifying optimal conditions on the use of A. taxiformis as a dietary supplement for methane mitigation. Accordingly, the objective of this work was to model the effect of A. taxiformis supplementation on the rumen microbial fermentation under in vitro conditions. We adapted a published mathematical model of rumen microbial fermentation to account for A. taxiformis supplementation. We modelled the impact of A. taxiformis on the fermentation and methane production by two mechanisms, namely (i) direct inhibition of the growth rate of methanogenesis by bromoform and (ii) hydrogen control on sugars utilization and on the flux distribution towards volatile fatty acids production. We calibrated our model using a multi-experiment estimation approach that integrated experimental data with six macroalgae supplementation levels from a published in vitro study assessing the dose-response impact of A. taxiformis on rumen fermentation.Resultsour model captured satisfactorily the effect of A. taxiformis on the dynamic profile of rumen microbial fermentation for the six supplementation levels of A. taxiformis with an average determination coefficient of 0.88 and an average coefficient of variation of the root mean squared error of 15.2% for acetate, butyrate, propionate, ammonia and methane.Conclusionsour results indicated the potential of our model as prediction tool for assessing the impact of additives such as seaweeds on the rumen microbial fermentation and methane production in vitro. Additional dynamic data on hydrogen and bromoform are required to validate our model structure and look for model structure improvements. We are working on model extensions to account for in vivo conditions. We expect this model development can be useful to help the design of sustainable nutritional strategies promoting healthy rumen function and low environmental footprint.


Sign in / Sign up

Export Citation Format

Share Document