EFFECTS OF LOW FLUCTUATING TEMPERATURES ON FARM ANIMALS.: III. INFLUENCE OF AMBIENT AIR TEMPERATURE ON FEED INTAKE OF LACTATING HOLSTEIN-FRIESIAN COWS

1958 ◽  
Vol 38 (2) ◽  
pp. 148-159 ◽  
Author(s):  
M. A. MacDonald ◽  
J. M. Bell

This report presents effects of low temperatures on the feed consumption and efficiency of milk production of six mature, lactating, Holstein-Friesian cows that were confined in stanchions for three fortnightly experimental periods during which ambient temperatures measured in degree-hours per day (d-h/day) ranged from 110 to 1152 and daily minimum ambient air temperature (DMAAT) varied from 0° to 38°F. Applying results obtained, it was calculated that as temperatures decreased, i.e., d-h/day increased from 100 to 1200 and DMAAT decreased from 40° to 0°F, average daily intakes of total dry matter, hay, and gross and digestible Calories increased approximately 6.4 lb., 5.3 lb., 13 Therms and 9 Therms, respectively. Each of these increases was statistically significant at the 1 per cent level. Reductions in temperature also decreased gross and net caloric efficiencies of milk production approximately 10 and 8.5 per cent, respectively. These decreases were significant at the 2 per cent level. No correlation was evident between crude protein utilization and temperature.Results indicated that thermal stress was not overcome adequately by supplementary hay intake alone and that appetite stimulation by low temperatures had a carry-over effect continuing at least 24 hours. For continued efficient milk production during winters where low ambient temperatures are prevalent these results suggest it is necessary to provide some form of building insulation, ambient heat and/or provide a high energy supplement to otherwise adequate production rations.

1958 ◽  
Vol 38 (1) ◽  
pp. 10-22 ◽  
Author(s):  
M. A. MacDonald ◽  
J. M. Bell

This report presents data on the effect of low fluctuating ambient air temperatures on the rectal temperature, heart rate, and respiration rate in lactating Holstein-Friesian cows.Daily minimum ambient air temperature (DMAAT) inside the uninsulated University of Saskatchewan loose-housing shed ranged from −5° F. to 38° F. As ambient temperature decreased, rectal temperature and heart rate increased, while respiration rate decreased. Levels of significance were 10, 9, and 1 per cent for regressions of rectal temperature, heart rate, and respiration rate, respectively, on DMAAT. Levels of significance were 7, 10, and 1 per cent for regressions of rectal temperature, heart rate, and respiration rate, respectively, on degree hours per day (d-h/day). Degree hours per day is a measurement unit developed by the authors and is based on time and difference in degrees from 50° F.Change in rectal temperature and heart rate were not significantly (P = >.05) correlated with either change in d-h/day or change in DMAAT. Change in respiration rate was significantly (P = <.02) and negatively correlated with change in d-h/day and significantly (P = <.06) and positively correlated with change in DMAAT.Heart rate, rectal temperature, and respiration rate were not significantly correlated with each other. However, change in respiration rate was positively correlated with change in rectal temperature (P = <.03).While the influence of low temperatures resulted in small changes in these physiological characteristics compared to those experienced elsewhere in high temperature zones, it cannot be concluded that lactating cows were entirely free of thermal stress at temperatures as low as 0° F.


Author(s):  
Robert Brandon ◽  
Bryan Halliday ◽  
John S. Hoffman

The significant reduction in power output of small gas turbines at high ambient temperatures places the technology at a significant disadvantage compared with reciprocating engines. On site power applications in many jurisdictions are experiencing high power costs during summer peak times. A variable speed industrial fan combined with an evaporative cooler has been constructed and operated in the CETC laboratory in Ottawa, Canada to supply supercharged inlet air to a microturbine rated at 70 kW at ISO conditions. The supercharging system can raise the inlet air pressure by 10.5 kPa (42” wc). A mapping of the turbine performance has been done as a function of boost pressure, relative humidity and ambient air temperature. A net power increase has been observed from 57 kW to 70 kW at an ambient air temperature of 33°C (91°F) and RH of 60%, a 23% increase. Supercharging at lower temperatures yields lower net power increases since the microturbine generator rating is the limiting factor; for example an 11% increase in net power was observed at an inlet air temperature of 11°C (52°F) and RH of 60%. Supercharging was shown to decrease net fuel-to-electricity efficiency of this recuperated turbine by about 3%, at an air temperature of 33°C (91°F). An economic analysis using published power prices and weather data from Toronto explores the business case of using supercharging, with the best economies likely for multiple units or larger microturbines, such as 250 kW units. The objective of the project was to demonstrate the concept leading to a field trial in Toronto or in Calgary where the altitude offers a further benefit to the inlet air supercharging concept. Work is underway to design a control system suitable for field deployment for the concept.


1958 ◽  
Vol 38 (1) ◽  
pp. 23-32 ◽  
Author(s):  
M. A. MacDonald ◽  
J. M. Bell

The effects of low fluctuating temperatures on water intake and on the ratios of water intake to various other factors are reported. Six mature lactating Holstein-Friesian cows were confined in stanchions for three 14-day experimental periods during which temperatures, measured in degree-hours per day (d-h/day), ranged from 110 to 1152 and daily minimum ambient air temperatures (DMAAT) varied from 0° to 38° F. An interim period of approximately 14 days separated each test period. Each cow received hay ad libitum and concentrates were fed according to level of milk production and live weight. Each cow was watered individually five times daily and water consumption was recorded.Correlations of free water consumption and total water intake with both d-h/day and DMAAT were significant at the 2 per cent level in each case. Regressions of free water consumption and total water intake during the subsequent day on d-h/day were both significant at the 3 per cent level but regressions of the same factors on DMAAT were only significant at the 8 per cent level for free water consumption during the subsequent day and the 9 per cent level for total water intake during the subsequent day. Low fluctuating temperatures did not affect any of the ratios analysed to a significant extent. Thus, as d-h/day increased and DMAAT decreased, water intake increased. The increases were concomitant with increased feedstuffs intakes.Results of this study support Adolph’s hypothesis that the water requirement of mammals is roughly one millilitre per Calorie of heat produced. Temperature had no significant effect on this ratio. The correlation between water intake and caloric intake was significant at the 2 per cent level.Thermal stress effects experienced by the cows in response to temperature changes appeared to be dissipated within 24 hours, or overshadowed by the more immediate effects of the environment the following day.


1982 ◽  
Vol 17 (1) ◽  
pp. 135-148
Author(s):  
P.T. Wong ◽  
D.S. Mavinic

Abstract The treatability of a municipal leachate (BOD5 = 8090 mg/L) was investigated, by aerobic biostabilization, at a nutrient loading of BOD5:N:P of 100:3.2:1.1. The first stage effluents were subsequently polished by lime-magnesium coagulation. The ranges of ambient air temperature and sludge age studied were 5° to 25°C and 5 to 20 days, respectively. In the biostabilization phase, a BOD5:N:P loading of 100:3.2:1.1 was found to be “adequate” for treatment. Organic and metal removals in the first stage units were excellent. Under all conditions investigated, except for the two units close to washout conditions (5-day sludge age units at 5° and 10°C), BOD5 and COD removals of at least 99.4 and 96.4 percent, respectively, were achieved. Similarly, removal rates for most of the metals monitored were greater than 90 percent. In general, the removal of residual contaminants was not enhanced significantly by the addition of magnesium in the lime-magnesium polishing step.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3398
Author(s):  
Yi Long ◽  
Kun Liu ◽  
Yongli Zhang ◽  
Wenzhe Li

Inorganic cesium lead halide perovskites, as alternative light absorbers for organic–inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Younes Bahammou ◽  
Mounir Kouhila ◽  
Haytem Moussaoui ◽  
Hamza Lamsyehe ◽  
Zakaria Tagnamas ◽  
...  

PurposeThis work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.Design/methodology/approachThermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.FindingsThe models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.Originality/valueEvaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.


10.1289/ehp92 ◽  
2016 ◽  
Vol 124 (12) ◽  
pp. 1882-1890 ◽  
Author(s):  
Maria C. Mirabelli ◽  
Ambarish Vaidyanathan ◽  
W. Dana Flanders ◽  
Xiaoting Qin ◽  
Paul Garbe

Author(s):  
Henriks Putāns ◽  
Viktorija Zagorska ◽  
Imants Ziemelis ◽  
Zanis Jesko

A flat plate solar collector with cell polycarbonate absorber and transparent cover has been made and its experimental investigation carried out. The collector consists of a wooden box, into which, a layer of heat insulation with a mirror film and 4 mm thick cell polycarbonate sheet, as the absorber, are placed. The coherence between collector’s efficiency, heat carrier and ambient air temperature, as well as intensity of the solar radiation and heat power in the experimental investigation has been obtained. During the experimental examination the maximum temperature of the heat carrier reached 80˚C at the intensity of solar radiation about 0.8 kW/m2 and ambient air temperature around 32˚C. The efficiency of the collector reached 33-60%, depending on the intensity of solar radiation and surrounding air temperature.


2019 ◽  
Vol 647 ◽  
pp. 1351-1358 ◽  
Author(s):  
Panayiotis Kouis ◽  
Maria Kakkoura ◽  
Konstantinos Ziogas ◽  
Anastasia Κ. Paschalidou ◽  
Stefania I. Papatheodorou

Sign in / Sign up

Export Citation Format

Share Document