Response of glyphosate-resistant kochia (Kochia scoparia L. Schrad.) to alternative herbicides

2014 ◽  
Vol 94 (8) ◽  
pp. 1407-1411 ◽  
Author(s):  
Nikki Burton ◽  
Scott W. Shirriff ◽  
Hugh J. Beckie

Burton, N., Shirriff, S. W. and Beckie, H. J. 2014. Response of glyphosate-resistant kochia (Kochia scoparia L. Schrad.) to alternative herbicides. Can. J. Plant Sci. 94: 1407–1411. A greenhouse study was conducted to examine the response of glyphosate-resistant (GR) plus acetolactate synthase (ALS) inhibitor-resistant kochia to five post-emergence herbicide treatments commonly used to control the weed species in chemical fallow, cereals, or oilseed crops in western Canada. The treatments, which were applied to two GR kochia biotypes and one non-GR (susceptible) biotype, included the labeled rate of dicamba, dicamba/fluroxypyr, dicamba/diflufenzopyr, MCPA/bromoxynil, and glufosinate. Both GR and non-GR biotypes responded similarly to each of the herbicide treatments. Although both GR biotypes were sensitive to the herbicides, MCPA/bromoxynil was the most effective treatment in reducing shoot biomass 3 wk after application (99%), followed by glufosinate (91%) then the dicamba mixtures (82%). Dicamba alone only suppressed kochia biomass (76% reduction).

2016 ◽  
Vol 8 (2) ◽  
pp. 1 ◽  
Author(s):  
Jatinder S. Aulakh ◽  
P. S. Chahal ◽  
Amit J. Jhala

<p>In Nebraska, 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) as well as acetolactate synthase (ALS)-inhibitor-resistant weeds occur in many soybean fields where herbicides from these modes-of-action have been frequently used in the past. Currently, the protoporphyrinogen oxidase (PPO)-inhibitors are the only effective herbicides for POST control of both glyphosate- and ALS-inhibitor-resistant weeds in soybean. Greenhouse experiments were conducted in 2014 to evaluate the efficacy of PPO-inhibitors applied POST for the control of three glyphosate-resistant (GR) weeds and potential for soybean injury, when applied at two growth stages. All herbicide treatments controlled 10- and 20-cm tall GR common waterhemp ≥ 95% at 21 DAT. GR giant ragweed and kochia were controlled 86 to 99% when treated at 10-cm height and 78 to 92% at 20-cm height by 21 DAT. Herbicide treatments reduced shoot biomass in the three GR weeds 88 to 100% when treated at 10-cm height and 73 to 100% when treated at 20-cm height, at 21 DAT. Soybean injury and shoot biomass data revealed that acifluorfen and lactofen were more injurious (≥ 17%), whereas fomesafen, and fomesafen plus glyphosate were relatively safer (&lt; 10% injury). Overall, fomesafen and fomesafen plus glyphosate caused least injury to soybean and were more effective in controlling GR common waterhemp, giant ragweed, and kochia compared with acifluorfen and lactofen.</p>


2011 ◽  
Vol 25 (1) ◽  
pp. 170-175 ◽  
Author(s):  
Hugh J. Beckie ◽  
Suzanne I. Warwick ◽  
Connie A. Sauder ◽  
Chris Lozinski ◽  
Scott Shirriff

A survey of 109 fields was conducted across western Canada in spring 2007 to determine the extent of ALS-inhibitor and dicamba (synthetic auxin) resistance in kochia. Weed seedlings were collected from fields in three provinces of western Canada and transplanted into the greenhouse. Seeds were harvested from selfed plants, and the F1progeny were screened for resistance to the ALS-inhibitor mixture thifensulfuron–tribenuron or dicamba. All kochia populations were susceptible to dicamba. ALS inhibitor–resistant kochia was found in 85% of the fields surveyed in western Canada: 80 of 95 fields in Alberta, six of seven fields in Saskatchewan, and all seven fields in Manitoba. For the 93 ALS inhibitor–resistant populations, the mean frequency (±SE) of parental plants classified as resistant was 61 ± 3%. Most of the resistant populations (87%) were heterogeneous and contained both resistant and susceptible individuals.ALSsequence data (Pro197and Asp376mutations) and genotyping data (Trp574mutation) obtained for 87 kochia parental (i.e., field-collected) plants confirmed the presence of all three target-site mutations as well as two mutational combinations (Pro197+ Trp574, Asp376+ Trp574) in resistant individuals.


Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 631-639 ◽  
Author(s):  
Suzanne I. Warwick ◽  
Connie Sauder ◽  
Hugh J. Beckie

Multiple cases of ALS inhibitor-resistant weed biotypes are reported for many species, including wild mustard. The physiological extent and molecular basis of resistance to ALS inhibitors was compared in four biotypes of wild mustard from western Canada: a sulfonylurea (SU)-resistant (R) biotype from Manitoba detected in 1992; an SU (ethametsulfuron)-R biotype from Alberta detected in 1993 (metabolism-based resistance); an SU-R biotype from Manitoba detected in 2002; and a SU- and imidazolinone (IMI)-R biotype from Saskatchewan detected in 2002. Herbicide dose-response experiments confirmed that the two Manitoba biotypes were resistant to the SU herbicides ethametsulfuron and tribenuron : thifensulfuron mixture, whereas the Saskatchewan biotype was resistant to both SU herbicides and to imazethapyr, an IMI herbicide. Sequence analysis of theALSgene detected target site mutations in three of the four R biotypes, with amino acid substitutions Pro197(CCT) to Ser (TCT) [Domain A of the gene] in the two SU-R Manitoba biotypes and Trp574(TGG) to Leu (TTG) [Domain B] in the Saskatchewan biotype. The Alberta SU-R biotype had the sameALSnucleotide and amino acid sequence as the susceptible population at these two positions. Two heterozygous individuals [Trp574(Tt/gG)] were detected in the Saskatchewan biotype, and genetic segregation for nucleotide bases and resistance phenotype was consistent with single gene control. Nucleotide variation in neutral regions of theALSgene varied with biotype, with no variation in the two Manitoba biotypes, two variants in the Saskatchewan biotype, and 16 neutral nucleotide polymorphisms (0.9%) in the Alberta biotype. The occurrence of at least three different ALS inhibitor-R biotypes in this important weed species is likely to impact negatively on the use of ALS inhibitors, such as the IMIs, and serves as a warning for strict implementation of herbicide rotations to prevent or delay the evolution and spread of such populations.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 624-633 ◽  
Author(s):  
Hugh J. Beckie ◽  
Robert E. Blackshaw ◽  
Linda M. Hall ◽  
Eric N. Johnson

Efficient natural dispersal of herbicide-resistance alleles via seed and pollen can markedly accelerate the incidence of herbicide-resistant weed populations across an agroecoregion. Studies were conducted in western Canada in 2014 and 2015 to investigate pollen- and seed-mediated gene flow in kochia. Pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to non-GR kochia was quantified in a field trial (hub and spoke design) at Saskatoon, Saskatchewan. Seed-mediated gene flow of acetolactate synthase (ALS) inhibitor-resistant kochia as a function of tumbleweed speed and distance was estimated in cereal stubble fields at Lethbridge, Alberta and Scott, Saskatchewan. Regression analysis indicated that outcrossing from GR to adjacent non-GR kochia ranged from 5.3 to 7.5%, declining exponentially to 0.1 to 0.4% at 96 m distance. However, PMGF was significantly influenced by prevailing wind direction during pollination (maximum of 11 to 17% outcrossing down-wind). Seed dropped by tumbleweeds varied with distance and plant speed, approaching 90% or more (ca. 100,000 seeds or more) at distances of up to 1,000 m and plant speeds of up to 300 cm s–1. This study highlights the efficient proximal (pollen) and distal (seed) gene movement of this important GR weed.


Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 310-318 ◽  
Author(s):  
Hugh J. Beckie ◽  
Robert E. Blackshaw ◽  
Ryan Low ◽  
Linda M. Hall ◽  
Connie A. Sauder ◽  
...  

In summer, 2011, we investigated suspected glyphosate-resistant (GR) kochia in three chem-fallow fields (designated F1, F2, F3, each farmed by a different grower) in southern Alberta. This study characterizes glyphosate resistance in those populations, based on data from dose–response experiments. In a greenhouse experiment, the three populations exhibited a resistance factor ranging from 4 to 6 based on shoot biomass response (GR50ratios), or 5 to 7 based on survival response (LD50ratios). Similar results were found in a field dose–response experiment at Lethbridge, AB, in spring 2012 using the F2 kochia population. In fall 2011, we surveyed 46 fields within a 20-km radius of the three chem-fallow fields for GR kochia. In the greenhouse, populations were screened with glyphosate at 900 g ae ha−1. Seven populations were confirmed as GR, the farthest site located about 13 km from the three originally confirmed populations. An additional GR population more than 100 km away was later confirmed. Populations were screened for acetolactate synthase (ALS)–inhibitor (thifensulfuron : tribenuron) and dicamba resistance in the greenhouse, with molecular characterization of ALS-inhibitor resistance in the F1, F2, and F3 populations. All GR populations were resistant to the ALS-inhibiting herbicide, but susceptible to dicamba. ALS-inhibitor resistance in kochia was conferred by Pro197, Asp376, or Trp574amino acid substitutions. Based upon a simple empirical model with a parameter for selection pressure, calculated from weed relative abundance and glyphosate efficacy, and a parameter for seedbank longevity, kochia, wild oat, and green foxtail were the top three weeds, respectively, predicted at risk of selection for glyphosate resistance in the semiarid Grassland region of the Canadian prairies; wild oat, green foxtail, and cleavers species were predicted at greatest risk in the subhumid Parkland region. This study confirms the first occurrence of a GR weed in western Canada. Future research on GR kochia will include monitoring, biology and ecology, fitness, mechanism of resistance, and best management practices.


2015 ◽  
Vol 29 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Vipan Kumar ◽  
Prashant Jha

Field experiments were conducted in 2011 through 2013 at the MSU Southern Agricultural Research Center near Huntley, MT, to evaluate the effectiveness of various PRE and POST herbicide programs for kochia control in the absence of a crop. PRE herbicides labeled for corn, grain sorghum, soybean, wheat/barley, and/or in chemical fallow were applied at recommended field-use rates. Acetochlor + atrazine,S-metolachlor + atrazine + mesotrione, and sulfentrazone applied PRE provided ≥91% control of kochia at 12 wk after treatment (WAT). Metribuzin, metribuzin + linuron, and pyroxasulfone + atrazine PRE provided 82% control at 12 WAT. PRE control with acetochlor + flumetsulam + clopyralid, pyroxasulfone alone, and saflufenacil + 2,4-D was ≤23% at 12 WAT. Paraquat + atrazine, paraquat + linuron, and paraquat + metribuzin controlled kochia ≥98% at 5 WAT. POST control with bromoxynil + fluroxypyr, paraquat, tembotrione + atrazine, and topramezone + atrazine treatments averaged 84% at 5 WAT, and did not differ from glyphosate. Control with POST-applied bromoxynil + pyrasulfotole, dicamba, diflufenzopyr + dicamba + 2,4-D, saflufenacil, saflufenacil + 2,4-D, saflufenacil + linuron was 67 to 78% at 5 WAT. Because of the presence of kochia resistant to acetolactate synthase-inhibiting herbicides at the test site, cloransulam-methyl was not a viable option for kochia control. In a separate greenhouse study, kochia accessions showed differential response to the POST herbicides (labeled for corn or soybean) tested. Tembotrione + atrazine, topramezone + atrazine, lactofen, or fomesafen effectively controlled the glyphosate-resistant kochia accession tested. Growers should utilize these effective PRE- or POST-applied herbicide premixes or tank mixtures (multiple modes of action) to control herbicide-resistant kochia accessions in the field. PRE herbicides with 8 wk of soil-residual activity on kochia would be acceptable if crop competition were present; however, a follow-up herbicide application may be needed to obtain season-long kochia control in the absence of crop competition.


2013 ◽  
Vol 27 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Rodrigo Werle ◽  
Mark L. Bernards ◽  
Loren J. Giesler ◽  
John L. Lindquist

Soybean cyst nematode (SCN) is the most yield-limiting pathogen of soybean in the United States. Henbit is a prevalent winter annual weed species in no-till fields and is reported to be an alternative host of SCN. A greenhouse study was conducted to evaluate how the development of SCN on henbit roots was affected by herbicide mode of action and time of herbicide application. Henbit plants were grown in watertight pots placed in a water bath bench that kept soil temperature constant (27 ± 1 C) during the study. Ten d after transplanting, pots were inoculated with approximately 1,000 SCN eggs. At 7, 14, or 21 d after inoculation (DAI), henbit plants were sprayed with recommended dose of either glyphosate (870 g ae ha−1) or 2,4-D (1,070 g ae ha−1). The experiment was arranged in a randomized complete block design with five replications per treatment, and two experimental runs separated in time. At 28 DAI, the total number of SCN cysts and eggs, and plant shoot and root dry weight per pot were determined. Henbit root and shoot biomass increased as the time of herbicide application was delayed. Glyphosate reduced root biomass more than 2,4-D, but no differences in shoot biomass were detected. The number of SCN cysts per henbit plant and eggs per cyst increased as the herbicide application was delayed from 7 to 21 DAI. Glyphosate reduced the number of cysts found on henbit roots more than 2,4-D, especially at earlier application times. On plants treated with glyphosate, SCN-females produced only half the number of eggs of SCN-females on henbit plants treated with 2,4-D, regardless of time of application. These results indicate that early control of henbit plants, especially with glyphosate, can reduce SCN reproduction potential in SCN infested fields.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Hugh J. Beckie ◽  
Peter H. Sikkema ◽  
Nader Soltani ◽  
Robert E. Blackshaw ◽  
Eric N. Johnson

Glyphosate-resistant (GR) giant ragweed, horseweed, and common ragweed were confirmed in southwestern Ontario, Canada in 2008, 2010, and 2011, respectively. In the western prairie provinces of Alberta and Saskatchewan, GR (plus acetolactate synthase inhibitor-resistant) kochia was discovered in 2011. This symposium paper estimates the environmental impact (EI) of the top herbicide treatments or programs used to manage these GR weed species in the major field crops grown in each region. For each herbicide treatment, EI (per ha basis) was calculated as the environmental impact quotient (EIQ), which quantifies the relative potential risk of pesticide active ingredients on human and ecological health based on risk components to farm workers, consumers, and the environment, multiplied by the application rate (kg ai ha−1). Total EI is defined as EI (per ha basis) multiplied by the application area (i.e., land area affected by a GR weed). It was assumed that all herbicide treatments would supplement the continued usage of glyphosate because of its broad spectrum weed control. For the control of these GR weeds, most treatments contain auxinic or protoporphyrinogen oxidase (PPO)-inhibiting herbicides. The majority of auxinic herbicide treatments result in low (EI ≤ 10) to moderate (11 to 20) EI, whereas all treatments of PPO inhibitors have low EI. Total EI of GR horseweed and kochia will generally be greater than that of giant or common ragweed because of rapid seed dispersal. For recommended herbicide treatments to control GR weeds (and herbicide-resistant weeds in general), EI data should be routinely included with cost and site of action in weed control extension publications and software, so that growers have the information needed to assess the EI of their actions.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
J. Scott McElroy ◽  
S. Chen ◽  
H. Zhang ◽  
...  

Acetolactate synthase (ALS) inhibitors are widely used for POST control of sedges in turfgrass. A suspected resistant (R) biotype of annual sedge was collected from a bermudagrass turf in Georgia with a history of exclusive use of halosulfuron. Research was conducted to evaluate the resistance level of this biotype to halosulfuron, efficacy of ALS-inhibiting herbicides and other mechanisms of action for control, and the molecular and physiological basis for resistance. In greenhouse experiments, the halosulfuron rate required to reduce shoot biomass 50% in comparison with the nontreated at 8 wk after treatment (WAT) were 8 and > 1,120 g ai ha−1for the S (susceptible) and R biotypes, respectively. Imazapic, sulfosulfuron, and trifloxysulfuron reduced biomass of the S biotype greater than 60% at 8 WAT, but biomass was reduced less than 20% for the R biotype. Glufosinate, glyphosate, MSMA, and sulfentrazone reduced shoot biomass of the R biotype by 93, 86, 97, and 45%, respectively. In laboratory experiments, the halosulfuron concentration required to inhibit ALS activity by 50% in excised leaf tissues was 5.8 and > 1,000 μM for the S and R biotypes, respectively. Gene sequencing of the R biotype revealed a Pro-197-Ser substitution that confers resistance to ALS inhibitors. This is the first report of ALS-inhibitor resistance in annual sedge and herbicide resistance in a sedge species from a turfgrass system.


2012 ◽  
Vol 26 (1) ◽  
pp. 151-155 ◽  
Author(s):  
Hugh J. Beckie ◽  
Suzanne I. Warwick ◽  
Connie A. Sauder ◽  
Gina M. Kelln ◽  
Chris Lozinski

Cleavers species (false cleavers and catchweed bedstraw) are among the top 10 most abundant weeds across the prairie region of western Canada, and are increasing in relative abundance at the fastest rate since the 1970s. In 2008, two false cleavers populations from Tisdale and Choiceland, Saskatchewan, were suspected of acetolactate synthase (ALS) –inhibitor resistance. Dose-response experiments were conducted with the use of imazethapyr and florasulam, both ALS inhibitors, as well as fluroxypyr, a synthetic auxin. Additionally, a 1,954–base-pair region of theALSgene including sites known to conferALSresistance were sequenced. Both populations were highly resistant to imazethapyr (resistance factors greater than 100), one population (Tisdale) was highly resistant to florasulam (Choiceland population susceptible, although a second, larger screening of 200 individuals indicated low frequency [2%] florasulam resistance), and both populations were susceptible to fluroxypyr. All sequenced Tisdale individuals screened with imazethapyr posessed the Trp574Leu mutation. In contrast, three point mutations were found for Choiceland individuals sequenced: Ser653Asn, Trp574Leu, and Asp376Glu. TheseALStarget-site mutations have not been documented previously in this species.


Sign in / Sign up

Export Citation Format

Share Document