scholarly journals Genetic diversity and selection of genotypes to enhance Zn and Fe content in common bean

2010 ◽  
Vol 90 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Z I Talukder ◽  
E Anderson ◽  
P N Miklas ◽  
M W Blair ◽  
J Osorno ◽  
...  

Common bean (Phaseolus vulgaris L.) is an important source of dietary protein and minerals worldwide. Genes conditioning variability for mineral contents are not clearly understood. Our ultimate goal is to identify genes conditioning genetic variation for Zn and Fe content. To establish mapping populations for this objective, we tested mineral content of 29 common bean genotypes. Chemical analyses revealed significant genetic variability for seed Zn and Fe contents among the genotypes. Genetic diversity was evaluated with 49 primer pairs, of which 23 were simple sequence repeats (SSR), 16 were developed from tentative consensus (TC) sequences, and 10 were generated from common bean NBS-LRR gene sequences. The discriminatory ability of molecular markers for identifying allelic variation among genotypes was estimated by polymorphism information content (PIC) and the genetic diversity was measured from genetic similarities between genotypes. Primers developed from NBS-LRR gene sequences were highly polymorphic in both PIC values and number of alleles (0.82 and 5.3), followed by SSRs (0.56 and 3.0), and markers developed from TC (0.39 and 2.0). genetic similarity values between genotypes ranged from 14.0 (JaloEEP558 and DOR364) to 91.4 (MIB152 and MIB465). Cluster analysis clearly discriminated the genotypes into Mesoamerican and Andean gene pools. Common bean genotypes were selected to include in crossing to enhance seed Zn and Fe content based on genetic diversity and seed mineral contents of the genotypes. Key words: Common bean, genetic diversity, mineral nutrients, breeding

2011 ◽  
Vol 9 (01) ◽  
pp. 86-96 ◽  
Author(s):  
Lucy M. Díaz ◽  
Héctor F. Buendía ◽  
Myriam C. Duque ◽  
Matthew W. Blair

Colombia, situated at the northern end of the Andes mountains of South America and in proximity to Central America, is an important centre of diversity for common bean (Phaseolus vulgarisL.) that has a mix of cultivated germplasm from both major gene pools (Andean and Mesoamerican) for the species. Microsatellites are a useful marker system for analyzing genetic diversity of this crop and can be analyzed with manual (silver-stain) or automated (ABI) detection systems and using unlabelled or fluorescently labelled markers, respectively. The objectives of this research were to evaluate the genetic diversity of 92 Colombian landraces and gene pool controls with 36 fluorescent and 30 non-fluorescent microsatellite markers and to determine the extent of introgression between the Andean and Mesoamerican gene pools for this germplasm. A comparison of fluorescentversusnon-fluorescent marker systems was performed with 14 loci, which were evaluated with both methods; the fluorescent markers were found to be more precise than the non-fluorescent markers in determining population structure. A combined analysis of 52 microsatellites using the 36 fluorescent markers and 16 non-overlapping, silver-stained markers produced an accurate population structure for the Andean gene pool that separated race Nueva Granada and race Peru genotypes and clearly identified introgression between these races and the gene pools. The results of this research are important for the application of microsatellite markers to diversity analysis in common bean and for the conservation of landraces in Colombia and neighbouring countries of Latin America, where similar germplasm exists and where gene pool or race mixtures also occur.


Genome ◽  
1994 ◽  
Vol 37 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Viviana L. Becerra Velasquez ◽  
Paul Gepts

Eighty-five wild and cultivated accessions of common bean (Phaseolus vulgaris L.), representing a wide geographic area in the centres of domestication were tested for restriction fragment length polymorphisms (RFLPs). Genomic DNA was digested with one of three restriction enzymes (EcoRI, EcoRV, and HindIII) and hybridized to 12 probes distributed throughout the common bean genome. Accessions could be classified into two major groups with a distinct geographical distribution in Middle America and the Andes. Within each gene pool, cultivated accessions clustered together with wild forms from the same geographical area supporting the multiple domestications hypothesis for this crop. Estimates of Nei's genetic distances among the cultivated races from the two different gene pools varied from 0.12 to 0.56 and among races from the same gene pool from 0.04 to 0.12, suggesting that the divergence in Phaseolus vulgaris has reached the subspecies level. The level of genetic diversity (Ht = 0.38) was twice the value obtained with isozyme analysis. Genetic diversity within races (Hs = 0.27) was four to five times higher compared with isozymes, but genetic diversity between races (Dst = 0.11) was similar for both categories of markers. These results corroborate previous studies on the characterization of genetic diversity in common bean that clearly showed two distinct gene pools, Middle American and Andean. Moreover, RFLP markers are superior to isozymes because they provide better coverage of the genome and reveal higher level of polymorphisms.Key words: common bean, restriction fragment length polymorphism, domestication, genetic diversity.


2013 ◽  
Vol 138 (4) ◽  
pp. 297-305 ◽  
Author(s):  
Marko Maras ◽  
Jelka Šuštar-Vozlič ◽  
Wolfgang Kainz ◽  
Vladimir Meglič

Common bean (Phaseolus vulgaris L.) was introduced in Europe from both Mesoamerican and Andean centers of origin and has been cultivated in central Europe for centuries. The first objective of this study was to evaluate genetic diversity and the population structure of 167 accessions divided into four groups according to geographical origin (Slovenia and Austria) and time periods (historical and present) using 14 simple sequence repeat (SSR) markers. The second objective was to improve our understanding of the pathways of dissemination and the evolution of this species in central Europe. Great allelic polymorphism was detected in all four groups of examined accessions, indicating that Slovene and Austrian bean germplasm in the past possessed significant variation that has been well preserved until today. In factorial correspondence analysis, accessions from different groups clustered together indicating potential gene flow between countries. The uncovered diversity corresponded very well to the two recognized gene pools (Andean and Mesoamerican). The majority of accessions in every single group belonged to the Andean gene pool. Strong predominance of Andean genotypes classifies Slovenia among other Mediterranean countries, like Spain and Italy. The latter appears as a most probable source of first beans in Slovenia and Austria. We assume that in the beginning of the previous century after very tight relationships between Slovenia and Austria loosened, introgression of genotypes from western and northern European countries took place in Austria, which resulted in a very high proportion of Mesoamerican genotypes that we found in the present Austrian germplasm (44%). Several putative hybrids between the Andean and Mesoamerican gene pools were detected in this study. Evolutionary significance, origin, and breeding potential of these recombinants are discussed here.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243238
Author(s):  
Wilson Nkhata ◽  
Hussein Shimelis ◽  
Rob Melis ◽  
Rowland Chirwa ◽  
Tenyson Mzengeza ◽  
...  

Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.


1997 ◽  
Vol 87 (8) ◽  
pp. 807-813 ◽  
Author(s):  
D. Sicard ◽  
Y. Michalakis ◽  
M. Dron ◽  
C. Neema

Population subdivision of Colletotrichum lindemuthianum, the causal agent of anthracnose, was studied in three regions located in three centers of diversity of its host, Phaseolus vulgaris. Random amplified polymorphic DNA (RAPD) markers, restriction endonuclease analysis of the amplified ribosomal internal transcribed spacer region, and virulence on a set of 12 cultivars were used to assess the genetic diversity of C. lindemuthianum strains isolated in Mexican, Ecuadorian, and Argentinean wild common bean populations. The three regions were significantly differentiated for molecular markers. For these markers, Mexico was the most polymorphic and the most distant from Ecuador and Argentina. The majority of the RAPD alleles present in Ecuador and Argentina were found in Mexico, suggesting that Andean populations have been derived from the Mesoamerican center. Pathogenicity tests on a set of 12 cultivars showed that all but one of the Mexican strains were virulent exclusively on Mesoamerican cultivars. Argentinean strains were virulent preferentially on southern Andes cultivars, and the Ecuadorian strains, except for one strain, were avirulent on all cultivars. These results suggest an adaptation of strains on cultivars of the same geographic origin. Thus, based on molecular and virulence markers, C. lindemuthianum strains isolated from wild common bean populations were divided into three groups corresponding to host gene pools.


2012 ◽  
Vol 10 (2) ◽  
pp. 108-118 ◽  
Author(s):  
O. R. Jiménez ◽  
H. Korpelainen

Nicaragua is located in the Mesoamerican diversity centre for common beans (Phaseolus vulgarisL.). Yet, there is insufficient knowledge of the molecular characteristics of most common bean landraces in Nicaragua. The objectives of the present study were to investigate the genetic diversity of common bean landraces and to identify promising sources of genetic variation for breeding purposes. Two cultivars and 40 landraces never studied before were selected from a collection based on the geographic origin, seed coloration and information provided by farmers. Fourteen microsatellite markers distributed in different linkage groups were analysed. The study revealed that there is a high genetic diversity (mean 8.9 alleles per locus). The populations showed structuring into three groups where seed weight had a strong relationship with population clustering. At least 20% of the populations hold promising allelic variation and potential for good market acceptance that could be maximized in breeding programmes. Additionally, four markers revealed a high correlation with seed length, width and weight, suggesting that marker-assisted selection for these yield-determinant traits could be straightforward. Nonetheless, more marker–trait associations should be addressed in order to enforce this practice.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 680
Author(s):  
Evangelia V. Avramidou ◽  
Theodoros Moysiadis ◽  
Ioannis Ganopoulos ◽  
Michail Michailidis ◽  
Christos Kissoudis ◽  
...  

Sweet cherry germplasm contains a high variety of phenotypes which are associated with fruit size and shape as well as sugar content, etc. High phenotypic variation can be a result of genetic or epigenetic diversity that may interact through time. Recent studies have provided evidence that besides allelic variation, epiallelic variation can establish new heritable phenotypes. Herein we conducted a genetic and an epigenetic study (using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) markers, respectively), accompanied by phenotypic traits correlation analysis in sweet cherry gene pools. The mean genetic diversity was greater than the epigenetic diversity (hgen = 0.193; hepi = 0.185), while no significant relationship was found between genetic and epigenetic distance according to a Mantel test. Furthermore, according to correlation analyses our results provided evidence that epigenetic diversity in predefined populations of sweet cherry had a stronger impact on phenotypic traits than their rich genetic diversity.


2006 ◽  
Vol 96 (11) ◽  
pp. 1204-1213 ◽  
Author(s):  
Ruth López ◽  
Carmen Asensio ◽  
Robert L. Gilbertson

Common bacterial blight (CBB) disease of the common bean (Phaseolus vulgaris) is caused by Xanthomonas campestris pv. phaseoli and the brown-pigmented variant X. campestris pv. phaseoli var. fuscans. CBB first was described in Castilla y León County, Spain, in 1940, and is now a major constraint on common bean production. In this secondary center of diversity of the common bean, large-seeded Andean cultivars predominate, although medium-seeded Middle American cultivars also are grown. Xanthomonad-like bacteria associated with CBB in Castilla y León were characterized on the basis of carbohydrate metabolism, brown pigment production, genetic analyses (repetitive-element polymerase chain reaction [rep-PCR] and random amplified polymorphic DNA [RAPD]) and pathogenicity on cultivars representing the two common bean gene pools (Andean and Middle American). X. campestris pv. phaseoli was more prevalent (80%) than X. campestris pv. phaseoli var. fuscans (20%). Patterns of carbohydrate metabolism of Spanish CBB bacteria were similar to those of known strains; and only X. campestris pv. phaseoli var. fuscans strains utilized mannitol as a sole carbon source. rep-PCR and RAPD analyses revealed relatively little genetic diversity among Spanish X. campestris pv. phaseoli strains, and these strains were placed together with New World strains into a large cluster. Similar to other New World strains, representative Spanish X. campestris pv. phaseoli strains were highly pathogenic on bean cultivars of both gene pools, showing no gene pool specialization such as that found in certain East African strains. Genetic analyses and pathogenicity tests confirmed and extended previous results, indicating that these East African strains represent distinct xanthomonads that independently evolved to be pathogenic on common bean. X. campestris pv. phaseoli var. fuscans strains were more closely related and genetically distinct from X. campestris pv. phaseoli strains. However, two distinct clusters of X. campestris pv. phaseoli var. fuscans strains were identified, one having the most New World strains and the other having the most African strains. Spanish strains were placed in both clusters, but all strains tested were highly pathogenic on bean cultivars of both gene pools. Together, our results are consistent with multiple introductions of CBB bacteria into Spain. These findings are discussed in terms of breeding for CBB resistance and the overall understanding of the genetic diversity and evolution of CBB bacteria.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 518 ◽  
Author(s):  
Ana Campa ◽  
Ester Murube ◽  
Juan José Ferreira

A common bean (Phaseolus vulgaris) diversity panel of 308 lines was established from local Spanish germplasm, as well as old and elite cultivars mainly used for snap consumption. Most of the landraces included derived from the Spanish common bean core collection, so this panel can be considered to be representative of the Spanish diversity for this species. The panel was characterized by 3099 single-nucleotide polymorphism markers obtained through genotyping-by-sequencing, which revealed a wide genetic diversity and a low level of redundant material within the panel. Structure, cluster, and principal component analyses revealed the presence of two main subpopulations corresponding to the two main gene pools identified in common bean, the Andean and Mesoamerican pools, although most lines (70%) were associated with the Andean gene pool. Lines showing recombination between the two gene pools were also observed, most of them showing useful for snap bean consumption, which suggests that both gene pools were probably used in the breeding of snap bean cultivars. The usefulness of this panel for genome-wide association studies was tested by conducting association mapping for determinacy. Significant marker–trait associations were found on chromosome Pv01, involving the gene Phvul.001G189200, which was identified as a candidate gene for determinacy in the common bean.


Sign in / Sign up

Export Citation Format

Share Document