Integrating green manure and grazing systems: A review

2011 ◽  
Vol 91 (5) ◽  
pp. 811-824 ◽  
Author(s):  
Joanne Thiessen Martens ◽  
Martin Entz

Thiessen Martens, J. R. and Entz, M. H. 2011. Integrating green manure and grazing systems: A review. Can. J. Plant Sci. 91: 811–824. Green manuring, also referred to as cover cropping, is an ancient practice that is gaining popularity, especially in ecologically integrated farming systems. Much green manure research in Canada has focused on legumes, where green manure plant material is incorporated into soil. This review focuses on the role of livestock in utilizing traditional and novel green manure crops adapted to the Canadian prairies. Legume and non-legume green manure plant species are discussed in terms of suitability to grazing management by different livestock species. Integrating grazing livestock into green manure systems affects nutrient cycling and potential nitrogen (N) loss pathways. However, losses may not be substantially different from other production systems, especially when loss mitigation practices are employed. Grazing green manures may also affect soil biological and physical properties. We conclude that grazing green manures may provide economic as well as biological advantages over the traditional approach of soil incorporation. For example, a green manure biomass yield of 5000 kg ha−1 is sufficient to produce 175 kg ha−1 of animal live weight gain, providing a gross revenue of $385 to $770 ha−1 at April 2011 prices, while returning at least 75% of N and other nutrients to the field. Barriers to farmer adoption of grazed green manure systems include a lack of livestock management knowledge and infrastructure.

1996 ◽  
Vol 76 (2) ◽  
pp. 223-228 ◽  
Author(s):  
S. A. Brandt

A number of alternative options to summerfallow are feasible on the Dark Brown soils of the Canadian prairies. These include recropping to cereal or pulse crops, as well as use of summerfallow substitute crops, such as legume green manures. The objective of this study was to evaluate these options for their impact on the productivity of subsequent crops. Green-manure lentil (Lens culinaris Medic.), incorporated at either the bud or full-bloom stage of growth, field pew (Pisum sativum L.), grain lentil, and wheat (Triticum aestivum L.) grown as grain were compared with conventional summerfallow for their impact on yield of a succeeding wheat crop and of barley (Hordeum vulgare L.) grown the year after wheat on a Dark Brown Chernozemic soil at Scott, Saskatchewan. During the 5-yr period, 1984–1988, above-ground dry-matter production of green-manure lentil averaged 500 kg ha−1 at the bud stage of growth but more than doubled to 3170 kg ha−1, by full bloom. Grain yield of field pea averaged 1470 kg ha−1, while that of grain lentil, unfertilized wheat, and N-fertilized wheat averaged 1220, 1290 and 1490 kg ha−1, respectively. Considerable year-to-year yield variation occurred with all crops, variability being greatest for lentil. Yield of wheat grown after lentil green manure was similar to yield of wheat on summerfallow (2340 kg ha−1) during each of the 5 yr for both early (2360 kg ha−1) and late (2250 kg ha−1) incorporation. Wheat yield after pea (2210 kg ha−1) or grain lentil (2080 kg ha−) was reduced in 1987, but it was equal to wheat yield after summerfallow during the remaining 4 yr. Yield of wheat on wheat stubble, whether fertilized with N (1830 kg ha−1) or not (1610 kg ha−1), was generally lower than on summerfallow. Yield of barley grown the following year was generally unaffected by summerfallow or summerfallow substitute treatments. The higher value and similar productivity of pea and grain lentil, compared with wheat, combined with their favourable impact on subsequent wheat yield, should make these crops attractive alternatives to summerfallow. On fields unsuited to pea or grain lentil production, lentil green manures may be a suitable alternative to summerfallow because they should reduce soil degradation, although lentil green manures leave little residue to protect against soil erosion where through incorporation is practised. Summerfallow or green manure incorporated early or late generally resulted in greater available soil water and N for a succeeding crop than did grain lentil, pea or wheat. Key words: Green manuring, legume effect, recropping, lentil, grain yield, summerfallow alternatives


2005 ◽  
Vol 2005 ◽  
pp. 145-145 ◽  
Author(s):  
A. Sanz ◽  
J. Alvarez ◽  
E. Balmisse ◽  
R. Delfa ◽  
R. Revilla ◽  
...  

Traditional sheep producers in the South European countries fed lambs with concentrate, in order to obtain light carcasses of young animals. As a consequence of this lamb production system, large grazing areas have been abandoned. However, some producers are taking into consideration the extensive grazing systems to reduce costs and at the same time to obtain subsidies established by the Common Agricultural Policy of the EU. Moreover, the increasing demand of healthy and safe meat products is stimulating the interest in pasture-based production systems. However, in our dry mountain conditions, this grazing system can be associated to poorer ewe and lamb performances. The present study sought to compare the productive parameters of ewes and lambs obtained in four different management strategies.


2019 ◽  
Vol 99 (5) ◽  
pp. 772-776
Author(s):  
Joanne R. Thiessen Martens ◽  
Derek H. Lynch ◽  
Martin H. Entz

Little is known about legume green manure productivity on organic farms. Soil and plant tissue were sampled in annual, biennial, and perennial green manures on 41 fields in the eastern prairies. Green manure biomass averaged 4572 kg ha−1; 53% was legume plant material and 18% was weeds. Soil test P and plant tissue P concentrations were below critical levels in about half of all green manures. Mean N fixation was estimated at 71 kg ha−1. This observational study provides a baseline for future research to optimize green manure and nutrient management in organic grain production systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ningguang Dong ◽  
Guanglong Hu ◽  
Yunqi Zhang ◽  
Jianxun Qi ◽  
Yonghao Chen ◽  
...  

AbstractThis study characterized the effect of green manures (February orchid, hairy vetch, rattail fescue and a no-green-manure control) and the termination method (flail or disk) on nutrient contents, enzyme activities, microbial biomass, microbial community structure of rhizosphere soil and vegetative growth of walnut tree. All three selected green manures significantly enhanced the water content, organic C, total N and available P. The rattail fescue significantly decreased the mineral N. Total organic C, total N, mineral N and available P were significantly greater under flail than under disk. Hairy vetch and February orchid significantly improved levels of soil β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activity, whereas rattail fescue improved only β-glucosidase activity. All of the green manures significantly decreased phenoloxidase activity. β-glucosidase, N-acetyl-glucosaminidase and acid phosphatase activities were significantly greater under flail relative to disk. The termination method had no significant effect on phenoloxidase activity. The different types of green manures and termination methods significantly altered the soil microbial biomass and microbial community structure. The green-manure treatments were characterized by a significantly greater abundance of Gram-positive (Gram +) bacteria, total bacteria and saprophytic fungi compared to the control. Hairy vetch significantly decreased the abundance of arbuscular mycorrhizal fungi (AMF) while February orchid and rattail fescue increased their abundance compared to the no-green-manure treatment. The abundance rates of Gram+ bacteria, actinomycetes, saprophytic fungi and AMF were significantly greater in soils under flail than under disk. In terms of vegetative growth of walnut tree, hairy vetch showed the greatest positive effects. The growth of walnut tree was significantly greater under flail relative to disk. Our results indicate that green-manure application benefits the rhizosphere soil micro-ecology, rhizosphere soil nutrient contents and tree growth. Overall, the hairy vetch and flail combined treatment is recommended for walnut orchards in northern China.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Mingjing Zhu ◽  
Binsheng Luo ◽  
Ben La ◽  
Ruijie Chen ◽  
Fenggui Liu ◽  
...  

Abstract Background Salar is a Turkic-speaking Islamic ethnic group in China living mainly in Xunhua Salar Autonomous County (Xunhua or Xunhua County), Qinghai-Tibet Plateau. Salar people are skilled in horticulture and their homegarden (HG) management. They are regarded as the first people on the Qinghai-Tibet Plateau to practice horticulture, especially manage their HGs, traditional farming systems, and supplementary food production systems. Traditional knowledge of Salar people associated with their HGs always contributes significantly to the local livelihood, food security, ornamental value, and biodiversity conservation. The cultivation of different plants in HGs for self-sufficiency has a long tradition in China’s rural areas, especially in some mountainous areas. However, Salar traditional HGs have not been described. The present paper aims to report the features of Salar HGs mostly based on agrobiodiversity and its ecosystem services. Methods The methods used in this work included semi-structured interviews and participatory observation. A total of 60 households in three townships, 9 villages were surveyed. There are 4–12 family members in each household, aged from 20 to 86 years old. The homestead size is between 200 and 1200 m2. Plant species cultivated in Salar HGs were identified according to Flora of China. Based on a comprehensive survey of Salar HGs and related to background data, we identified and characterized the most important services and functions provided by Salar HGs. Results According to primary production systems, there are 4 different types of Salar HGs, including ornamental focus, product focus, dual-purpose and multi-purpose. In total, 108 (excluding weeds and bonsai) plant species were recorded in Salar HGs, within 43 plant families. The most important and frequently used plants are Rosa chinensis, Armeniaca vulgar, Prunus salicina, and Ziziphus jujuba. About 4 to 32 plant species were recorded in each homegarden. We found that the Salar HGs, as a typical agroecosyste, prossess multiple servcices and functions that directly benefit households according to the field investigation. Conclusion This paper reveals the floristic diversity of Salar HGs. It presents useful information in the homegarden agroecosystem of Salar people, such as HG types and species diversity in Salar HGs. Ecosystem functions and services research suggested that the Salar HG agroecosystem provides agroecosystem services mainly related to supply and culture services. Salar HGs are important as food supplement resources, aesthetics symbol, and cultural spaces.


Author(s):  
T.S.M. Widi ◽  
H.M.J. Udo ◽  
K. Oldenbroek ◽  
I.G.S. Budisatria ◽  
E. Baliarti ◽  
...  

SummaryCross-breeding with European beef breeds has become a standard approach for the intensification of smallholder cattle production in Indonesia. This study assessed the environmental impact of cross-breeding, in terms of Global Warming Potential (GWP) and land use. We sampled 90 local Ongole and 162 cross-bred (Simmental × Ongole) cattle farms in four study areas. Expressed per kilogram of live weight of young stock produced, GWP (26.9 kg CO2–equivalents) and land use (34.2 m2) of farms with Ongole breeding stock were not significantly different from the GWP (28.9 kg CO2–equivalents) and land use (37.4 m2) of cross-bred farms. Cross-bred young stock grew faster, but in general cross-bred cattle required more feed. In the current smallholder production system, the dominant cross-breeding practice of using Simmental semen on Ongole andF1cross-bred cows does not result in lower greenhouse gas emissions or land use per kilogram of live weight produced compared with farms with Ongole cows. The advantage from the faster growth of cross-breds is counteracted by the higher emissions from feed production for cross-breds.


2010 ◽  
Vol 50 (4) ◽  
pp. 246 ◽  
Author(s):  
R. G. Chataway ◽  
R. G. Walker ◽  
M. N. Callow

Farmlets, each of 20 cows, were established to field test five milk production systems and provide a learning platform for farmers and researchers in a subtropical environment. The systems were developed through desktop modelling and industry consultation in response to the need for substantial increases in farm milk production following deregulation of the industry. Four of the systems were based on grazing and the continued use of existing farmland resource bases, whereas the fifth comprised a feedlot and associated forage base developed as a greenfield site. The field evaluation was conducted over 4 years under more adverse environmental conditions than anticipated with below average rainfall and restrictions on irrigation. For the grazed systems, mean annual milk yield per cow ranged from 6330 kg/year (1.9 cows/ha) for a herd based on rain-grown tropical pastures to 7617 kg/year (3.0 cows/ha) where animals were based on temperate and tropical irrigated forages. For the feedlot herd, production of 9460 kg/cow.year (4.3 cows/ha of forage base) was achieved. For all herds, the level of production achieved required annual inputs of concentrates of ~3 t DM/animal and purchased conserved fodder from 0.3 to 1.5 t DM/animal. This level of supplementary feeding made a major contribution to total farm nutrient inputs, contributing 50% or more of the nitrogen, phosphorus and potassium entering the farming system, and presents challenges to the management of manure and urine that results from the higher stocking rates enabled. Mean annual milk production for the five systems ranged from 88 to 105% of that predicted by the desktop modelling. This level of agreement for the grazed systems was achieved with minimal overall change in predicted feed inputs; however, the feedlot system required a substantial increase in inputs over those predicted. Reproductive performance for all systems was poorer than anticipated, particularly over the summer mating period. We conclude that the desktop model, developed as a rapid response to assist farmers modify their current farming systems, provided a reasonable prediction of inputs required and milk production. Further model development would need to consider more closely climate variability, the limitations summer temperatures place on reproductive success and the feed requirements of feedlot herds.


2012 ◽  
Vol 29 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Drew J. Lyon ◽  
Gary W. Hergert

AbstractOrganic farming systems use green and animal manures to supply nitrogen (N) to their fields for crop production. The objective of this study was to evaluate the effect of green manure and composted cattle manure on the subsequent winter wheat (Triticum aestivumL.) crop in a semiarid environment. Dry pea (Pisum sativumL.) was seeded in early April and terminated at first flower in late June. Composted cattle manure was applied at 0, 11.2 or 22.5 Mg ha−1just prior to pea termination. Winter wheat was planted in mid September following the green manure or tilled summer fallow. No positive wheat response to green manure or composted cattle manure was observed in any of the 3 years of the study. In 2 of the 3 years, wheat yields and grain test weight were reduced following green manure. Green manure reduced grain yields compared with summer fallow by 220 and 1190 kg ha−1in 2009 and 2010, respectively. This may partially be explained by 40 and 47 mm less soil water at wheat planting following peas compared with tilled summer fallow in 2008 and 2009, respectively. Also, in 2008 and 2009, soil nitrate level averaged 45 kg ha−1higher for black fallow compared with green manure fallow when no compost was added. Organic growers in the semiarid Central Great Plains will be challenged to supply N fertility to their winter wheat crop in a rapid and consistent manner as a result of the inherently variable precipitation. Growers may need to allow several years to pass before seeing the benefits of fertility practices in their winter wheat cropping systems.


Revista CERES ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Vagner do Nascimento ◽  
Orivaldo Arf ◽  
Maria Aparecida Anselmo Tarsitano ◽  
Nayara Fernanda Siviero Garcia ◽  
Mariele de Souza Penteado ◽  
...  

ABSTRACT The previous cultivation of green manures and mechanical soil decompression are options to minimize compaction of the topsoil in no-tilage system (NTS) set in different production systems in the Brazilian Savannah. In addition, it is essential to relate these agricultural practices with the economic benefits generated through the production cycles. The objective of this study was to evaluate economically the effect of sporadic mechanical decompression of the soil and previous cultivation of green manure in the production and net gain margin of upland rice and "winter" common bean, under sprinkler irrigation, in NTS in lowland Brazilian savannah. This study was developed in the 2012/13 harvest and 2013 winter in Selvíria, state of Mato Grosso do Sul, in an clay texture Oxisol in the savanah in the state of Mato Grosso do Sul, in a randomized block design arranged in a 5 x 2 factorial arrangement with four replications. The treatments were a combination of five green manures (fallow (control), Cajanus cajan, Crotalaria juncea, Pennisetum glaucum and Urochloa ruziziensis) with and without mechanical soil scarification. The yields of upland rice and common bean grains were not influenced by the previous green manure cultivation; the upland rice grown in succession to Cajanus cajan in the presence of mechanical soil scarification provided greater increase in grain yield and higher gross margin profit. Beans cultivated in succession to Crotalaria juncea and Pennisetum glaucum in the presence of mechanical soil scarification, followed by rice cultivation, provided greater increases in grain yield and gross profit margins.


2011 ◽  
pp. 467-510
Author(s):  
Guy P. Lafond ◽  
Stewart A. Brandt ◽  
George W. Clayton ◽  
R. Byron Irvine ◽  
William E. May

Sign in / Sign up

Export Citation Format

Share Document