Honey bee stocking numbers and wild blueberry production in Nova Scotia

2012 ◽  
Vol 92 (7) ◽  
pp. 1305-1310 ◽  
Author(s):  
Leonard J. Eaton ◽  
Vilis O. Nams

Eaton, L. J. and Nams, V. O. 2012. Honey bee stocking numbers and wild blueberry production in Nova Scotia. Can. J. Plant Sci. 92: 1305–1310. Wild blueberries (Vaccinium angustifolium Ait.) require cross pollination by insects. Introduction of managed species such as honey bees (Apis mellifera L.) and alfalfa leafcutting bees (Megachile rotundata Fabr.) is costly. We assessed the effects of stocking rates of honey bee hives and the interacting effects of the numbers of honey bees and other bees on yield of blueberries in commercial fields. Blueberry fields were sampled from 101 fields in years 1991 to 2010 in Nova Scotia. We recorded field size, numbers of beehives, yield, densities of bees, numbers of buds, blossoms and set fruit. Yields increased linearly with numbers of beehives, up to∼4 hives/hectare, but at higher stocking rates there was too much variation to adequately determine the effects. Yields also increased linearly with numbers of honey bees, but there was an interaction with other bees that decreased the effects of honey bees, such that at maximum densities of other bees, there was no effect of honey bees on yield. These results suggest that other bees and honey bees compete for pollination. If producers have limited numbers of beehives, we suggest that more should be placed in areas where densities of other bees are lower, up to approximately 4 hives/hectare.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1413
Author(s):  
Sara L. Bushmann ◽  
Francis A. Drummond

Maine is the largest producer of wild blueberry (Vaccinium angustifolium Aiton) in the United States. Pollination comes from combinations of honey bees (Apis mellifera (L.)), commercial bumble bees (Bombus impatiens Cresson), and wild bees. This study addresses (1) previous research addressing wild-blueberry pollination, (2) effects of wild-bee and honey-bee activity densities on fruit set, yield, and crop value, (3) the economic value of wild-bee communities, and (4) economic consequences of pollinator loss. Bee communities were sampled in 40 fields over three years (2010–2012) and bee activity densities were estimated for bumble bees, honey bees, and other wild bees. These data were applied to an economic model to estimate the value of bee taxa. Bumble bees and honey bees predicted fruit set and reduced its spatial heterogeneity. Other wild bees were not significant predictors of fruit set. Yield was predicted by fruit set and field size, but not pest management tactics. Our analysis showed that disruption in supply of honey bees would result in nearly a 30% decrease in crop yield, buffered in part by wild bees that provide “background” levels of pollination. Honey-bee stocking density and, thus, the activity density of honey bees was greater in larger fields, but not for wild bees. Therefore, a decrease in crop yield would be greater than 30% for large fields due to the proportionally greater investment in honey bees in large fields and a relatively lower contribution by wild bees.


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


2012 ◽  
Vol 144 (6) ◽  
pp. 779-791 ◽  
Author(s):  
G.C. Cutler ◽  
J.M. Renkema ◽  
C.G. Majka ◽  
J.M. Sproule

AbstractThe Carabidae (Coleoptera) are a diverse family of beetles with almost 300 species identified in Nova Scotia, Canada. Carabid beetle communities have been studied in several agricultural systems, but not wild blueberries, an important crop in eastern Canada. In the interest of potentially developing conservation biological control programs in wild blueberry, we collected Carabidae in crop (fruit-bearing) and sprout (vegetative) blueberry fields in Nova Scotia in order to assess species diversity and abundance over space and time. Over 3200 specimens were collected, representing 51 species. A large portion of collected specimens (39%) were nonnative, and the most abundant species were generally predacious and synanthropic. Species diversity tended to be higher near forest edges than further into fields, but not for all abundant species. Several of the most prominent predators showed significant differences in preference of crop versus sprout fields, distribution throughout fields, and seasonable abundance. These findings have implications for conservation biological control efforts with carabid beetles against several insect pests in wild blueberry.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


2012 ◽  
Vol 24 (8) ◽  
pp. 1079 ◽  
Author(s):  
Brandon K. Hopkins ◽  
Charles Herr ◽  
Walter S. Sheppard

Much of the world’s food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.


2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Roksana Kruszakin ◽  
Paweł Migdal

So far, larval rearing in vitro has been an important method in the assessment of bee toxicology, particularly in pesticide risk assessment. However, natural products are increasingly used to control honey bee pathogens or to enhance bee immunity, but their effects on honey bee larvae are mostly unknown. In this study, laboratory studies were conducted to determine the effects of including selected aqueous plant infusions in the diet of honey bee (Apis mellifera L.) larvae in vitro. The toxicity of infusions from three different plant species considered to be medicinal plants was evaluated: tansy (Tanacetum vulgare L.), greater celandine (Chelidonium majus L.), and coriander (Coriandrum sativum L.). The impact of each on the survival of the larvae of honey bees was also evaluated. One-day-old larvae were fed a basal diet consisting of distilled water, sugars (glucose and fructose), yeast extract, and freeze-dried royal jelly or test diets in which distilled water was replaced by plant infusions. The proportion of the diet components was adjusted to the age of the larvae. The larvae were fed twice a day. The experiment lasted seven days. Significant statistical differences in survival rates were found between groups of larvae (exposed or not to the infusions of tansy, greater celandine, and coriander). A significant decrease (p < 0.05) in the survival rate was observed in the group with the addition of a coriander herb infusion compared to the control. These results indicate that plant extracts intended to be used in beekeeping should be tested on all development stages of honey bees.


Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 122 ◽  
Author(s):  
Paul Winkler ◽  
Frank Sieg ◽  
Anja Buttstedt

One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.


Sign in / Sign up

Export Citation Format

Share Document