scholarly journals SELECTION CRITERIA IN THE SEEDLING STAGE FOR PREDICTING APPLE ROOTSTOCK VIGOR

1977 ◽  
Vol 57 (3) ◽  
pp. 667-674 ◽  
Author(s):  
S. R. MILLER

Growth measurements made on the apple cvs. McIntosh and Quinte grafted on 12 Ottawa rootstock selections were related to 10 measurements of predicting rootstock vigor. Potential vigor was assessed by three calculations of bark percentage in the roots, leaf weight of trees in the nursery or stoolbeds, the wheat growth bioassay, leaf respiration and level of amino nitrogen, and total P and K in the xylem sap of the ungrafted clones. Of the 10 indices, dry weight of the leaves of the ungrafted apple rootstocks growing in the nursery or in stoolbeds was the most satisfactory method of assessing potential early vegetative growth. The ungrafted rootstocks that resulted in most growth control had the largest leaves. Data obtained are discussed in relation to developing a method of selecting rootstocks with size-controlling potential.

1978 ◽  
Vol 89 (4) ◽  
pp. 289-295 ◽  
Author(s):  
T. Bubán ◽  
A. Varga ◽  
J. Tromp ◽  
E. Knegt ◽  
J. Bruinsma

2011 ◽  
Vol 136 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Ben van Hooijdonk ◽  
David Woolley ◽  
Ian Warrington ◽  
Stuart Tustin

‘Royal Gala’ apple scions (Malus ×domestica) were grafted onto 1-year-old rootstock stools of ‘M.9’ (M.9), ‘M.M.106’ (MM.106), ‘Merton 793’ (M.793), and ‘Royal Gala’ [R.G (control)] to elucidate how the dwarfing apple rootstock (M.9) modified scion architecture, the time from grafting when this started, and whether changes in scion architecture were explained by some endogenous hormones present within the scion. At the end of the first season of growth (April), the final length and node number of the primary shoot were similar for scions on M.9 and R.G. However, M.9 appeared to limit the number of secondary shoots formed on the primary shoot during summer. In addition, the proportion of secondary shoots that were actively extending in fall was lower for M.9; consequently, the final mean length of the secondary shoots was slightly shorter for M.9 compared with R.G. Collectively, these subtle effects of M.9 significantly reduced the final total shoot length of the scion compared with R.G. The final dry weight of the scion and root system was also lower for M.9 than MM.106, M.793, and R.G. The mean rate of indole-3-acetic acid diffusing from the apex of the primary shoot progressively declined from February onward irrespective of rootstock, whereas the mean concentration of zeatin riboside (ZR) in the xylem sap increased during the same period, and these events appeared to coincide with cumulative increases in the number of axillary growing points formed on the scion. Despite this general trend, M.9 had a greater concentration of ZR in the xylem sap during February compared with R.G, but the primary shoot on M.9 did not develop more axillary growing points, indicating that other endogenous hormonal signals were also involved in regulating scion branching. By March, M.9 lowered gibberellin A19 (GA19) concentration in the xylem sap of the scion significantly compared with R.G. We conclude that dwarfing apple rootstocks may limit root-produced GA19 supplied to shoot apices of the scion, where GA19 may be a precursor of bioactive gibberellin A1 required for shoot extension growth.


1999 ◽  
Vol 124 (6) ◽  
pp. 591-597 ◽  
Author(s):  
Steven J. McArtney ◽  
David C. Ferree

Grapevines (Vitis vinifera L.) were covered with an 80% neutral shade cloth from flowering until harvest to investigate effects of shade on early season vegetative development in the year after treatment. Shading reduced root dry weight, the concentration of soluble sugars, and amino nitrogen in xylem sap at budbreak, and leaf area expansion in the following year. Dry weight of roots on both shaded and nonshaded vines declined by more than 50% in the first 3 weeks after budbreak and then began to increase, but still had not recovered to prebudbreak levels, 10 weeks after budbreak. Total leaf area per shoot was reduced in the year after shading due to both fewer and smaller leaves.


1963 ◽  
Vol 14 (6) ◽  
pp. 725 ◽  
Author(s):  
TF Neales ◽  
MJ Anderson ◽  
IF Wardlaw

When wheat plants were deprived of nitrogen in the rooting medium at anthesis there was a small, but significant, increase in the nitrogen content of the grain at maturity. It was shown that there was a greater migration of nitrogen from the leaves and stem to the ear in plants deprived of nitrogen than in those plants supplied with nitrogen throughout ear development. In an examination of the effects on grain nitrogen content of leaf removal at anthesis, it was shown that this treatment reduces the uptake of nitrogen into the culm and the nitrogen content of the grain at maturity. Ear shading treatments significantly reduced the total nitrogen content of the grain in one experiment. Ear shading also decreased the amino nitrogen, and increased the nitrate nitrogen, content of the ear. Variation of the grain dry weight per ear, induced by shading, by defoliation treatments, or by differences in variety, were positively correlated with grain nitrogen content. Either the movement of dry matter and nitrogen into the ear are interdependent, or they are both promoted by some external factor, such as rate of growth of the ear. The possible importance of the leaves of the wheat plant in promoting the uptake of nitrogen into the culm and in supplying nitrogen to the grain is discussed.


1992 ◽  
Vol 19 (6) ◽  
pp. 611 ◽  
Author(s):  
GE Welbaum ◽  
FC Meinzer ◽  
RL Grayson ◽  
KT Thornham

In a previous study we found that the apoplast of mature sugarcane stalk tissue contains up to 700 mM sucrose. In the current study, we found that xylem sap, exuded under root pressure from decapitated stalks, was virtually free of sucrose. This suggested that the apoplast of sugarcane stalk tissue contains at least two separate compartments: one within the free space of the vascular bundles, which is nearly free of sucrose, and another in the free space of the surrounding storage tissue. Anatomical observations indicated that these putative compartments were separated by the sclerenchymatous bundle sheath cell walls that were suberised and lignified early in development, constituting a barrier to the movement of relatively large molecular weight solutes but not water. It was hypothesised that this semipermeability would enable sucrose and other solutes in the apoplast of the storage tissue to provide a gradient for osmotic water flow from the xylem, generating a hydrostatic pressure in the apoplast. Additional lines of evidence were obtained to support this hypothesis: (i) apoplastic dyes were restricted to the xylem and did not accumulate in the apoplast of storage tissue when water-stressed plants were rehydrated, (ii) water potential measured with in situ psychrometers decreased when sections of intact stalks were cut, (iii) mature internode tissue of well-watered plants often cracks after maximum fresh and dry weight accumulation, and (iv) internode sections typically shrink in diameter immediately upon excision. The existence of a semipermeable barrier separating the vascular bundles from the storage parenchyma apoplast would require that phloem unloading involve a symplastic step in order to traverse the barrier. The presence of plasmodesmatal connections between companion, sclerenchyrna, and storage parenchyma cells supported this conclusion.


2019 ◽  
Vol 11 (9) ◽  
pp. 2584 ◽  
Author(s):  
Hafiz Ahmed ◽  
Muhammad Sajjad ◽  
Mingju Li ◽  
Muhammad Azmat ◽  
Muhammad Rizwan ◽  
...  

Diminishing water resources as a result of excessive use of water for irrigation and climate change posture a severe global threat to food security. Herein, an experiment was conducted to determine the selection criteria for drought-tolerant bread wheat genotypes at the seedling stage using morphological and photosynthetic pigmentation-related traits. A panel of 105 wheat landraces, historical Pakistani varieties, and advance breeding lines were evaluated under normal and drought stress using factorial completely randomized design. The root length, fresh weight, dry weight, cell membrane thermo-stability, and chlorophyll b were positively correlated among themselves under both normal and stress conditions. Hence, selection of any one of these traits enhances the performance of other traits. The shoot length was non-significant and negatively associated with all other studied characters except relative water content. The results suggested that selection for shoot length could not improve genetic gain for drought tolerance. Out of 10 principal components (PCs), the first three PCs were showed significant genetic variation under both conditions. The first three PCs showed 74.6% and 76% cumulative genetic variation under normal and drought conditions, respectively. Based on PCA, 10 drought-tolerant and five drought-susceptible genotypes were identified. Overall results suggested that selection for root length, fresh weight, dry weight, cell membrane thermo-stability, and chlorophyll b at the seedling stage would improve genetic gain for drought tolerance. The outperforming genotypes under drought stress conditions can be useful in future wheat breeding programs, and early selection for the traits recommended in this study will be effective for developing high-yielding and drought-tolerant wheat varieties.


2010 ◽  
Vol 56 (No. 3) ◽  
pp. 139-143 ◽  
Author(s):  
D. Liu ◽  
X. Wang ◽  
Z. Chen ◽  
H. Xu ◽  
Y. Wang

Mercury (Hg) is one of the major pollutants in soils because of the annual import of toxic Hg into the agricultural lands. The aims of the present studies are to investigate the effect of Hg on chlorophyll content in winter wheat var. jinan No. 17. Moreover, calcium (Ca) levels and bioaccumulation of Hg in wheat leaves were studied with the technique of inductively coupled plasma sector field mass spectrometer (ICP-SF-MS). The study conducted a range of Hg concentrations from 0~500 mg Hg/kg in the dry weight soil. The soil was artificially contaminated with Hg as follows: 0, 100, 200, and 500 mg Hg/kg as HgCl<SUB>2</SUB>. At early stages of the wheat growth, both low and high concentration of Hg stimulates chlorophyll content, but inhibits chlorophyll content at later stages of the wheat growth. Furthermore, the concentrations of Ca and Hg in wheat leaves increased with the increasing concentration of Hg<SUP> </SUP>on the thirty-fourth day with the technique of ICP-SF-MS. The results indicate that Hg can accelerate the absorption of Ca in winter wheat and Hg stress may affect Ca levels in wheat leaves.


1976 ◽  
Vol 33 (1) ◽  
pp. 85-92 ◽  
Author(s):  
S. L. Wong ◽  
B. Clark

Many streams in southern Ontario experience excessive seasonal growth of aquatic plants such as Cladophora and Potamogeton. A direct relation, with a regression coefficient of 0.87, was observed between ambient P concentration in the water and P content of plant tissue in six rivers. Critical or growth controlling total P concentration of 60 μg/liter in stream water and 1.6 mg/gram dry weight in plant tissue were determined. Unlike P, no significant correlation was observed between N content of plant tissue and N concentration in water. The correlation of total P with plant growth can be used to estimate the waste load which would result in maximum growth rate of Cladophora.


1976 ◽  
Vol 56 (1) ◽  
pp. 9-20 ◽  
Author(s):  
R. W. SHEARD ◽  
A. J. LEYSHON

A laboratory procedure and apparatus design are described for the sampling of the soil solution and dissolved gases below the surface of a flooded soil without disturbance of the soil or the normal diffusion process. Ethylene and CO2 concentration increased in the dissolved gases of a flooded Maryhill loam (Ortho Humic Gleysol) as the duration of flooding increased from zero to 17 days and the redox potential (Eh) decreased. Soluble Fe and Mn slowly increased as the Eh decreased. The addition of NO3-N depressed ethylene formation and the release of soluble Fe and Mn. The addition of sucrose rapidly eliminated NO3-N from the soil solution, reduced the Eh to −330 mV, stimulated ethylene and CO2 formation, and further solubilized Fe and Mn. The accumulation of dry weight, total P and fertilizer P concentrations in corn were reduced by flooding soil for periods up to 12 days. The measurement of Eh, gases and Fe and Mn in the soil solution suggest that ethylene accumulation and O2 depletion were involved in the reduction of fertilizer P uptake.


Sign in / Sign up

Export Citation Format

Share Document