SALT ACCUMULATION IN A GLACIAL TILL SOIL IN THE PRESENCE OF SALINE GROUNDWATER AT SHALLOW DEPTHS

1963 ◽  
Vol 43 (1) ◽  
pp. 135-140 ◽  
Author(s):  
J. C. van Schaik ◽  
R. A. Milne

Considerable salt accumulation occurred in a grass-covered soil in southern Alberta where the saline groundwater was maintained at a depth of 3 feet. The SAR values of the saturation extract increased significantly under grass, and indications are that this increase was mainly due to precipitation of calcium. A fallow soil did not show a significant salt accumulation above the water table.It is suggested that a leaching program is necessary to maintain low salinity where shallow water tables are present and shallow tile drains are used.

1967 ◽  
Vol 5 ◽  
pp. 179-186 ◽  
Author(s):  
J.C. Van Schaik ◽  
D.S. Stevenson

2012 ◽  
Vol 16 (8) ◽  
pp. 3061-3074 ◽  
Author(s):  
J. L. Gunnink ◽  
J. H. A. Bosch ◽  
B. Siemon ◽  
B. Roth ◽  
E. Auken

Abstract. Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative of the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.


1964 ◽  
Vol 44 (2) ◽  
pp. 232-236 ◽  
Author(s):  
J. F. Dormaar

Two orthic profiles, widely separated geographically, of each of four parent materials—lacustrine, alluvial–lacustrine, glacial till, and Aeolian—were selected at undisturbed sites within each of the Brown, Dark Brown, and Thin Black soil zones. Material from the Ah and Bm horizons was subjected to solvent extraction, and for each sample the total organic carbon of seven different fractions was determined.The efficiency of the procedure in extracting humus carbon decreased as the total carbon content of the soil increased. Total organic matter, the first humic acid fraction, and the combined total of the three humic acid fractions showed significant differences between soil zones. The only significant separation between all four parent materials was made by the alcohol-benzene fraction. Other parent material separations were possible only following the summation of data of several fractions, such as the three humic acid fractions or the two fulvic acid fractions. A simplification of the procedure in case of soils of one Order and a modification to overcome the impeding effect of increased carbon content are requisite.


2001 ◽  
Vol 55 (4) ◽  
pp. 38-43 ◽  
Author(s):  
Khaled M. Bali ◽  
Mark E. Grismer ◽  
Richard L. Snyder

2012 ◽  
Vol 9 (3) ◽  
pp. 3269-3309 ◽  
Author(s):  
J. L. Gunnink ◽  
J. H. A. Bosch ◽  
B. Siemon ◽  
B. Roth ◽  
E. Auken

Abstract. Airborne Electro Magnetic (EM) methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from Electrical Cone Penetration Tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative for the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.


1962 ◽  
Vol 42 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J. C. Van Schaik ◽  
R. A. Milne

Leaching studies showed that shallow glacial soils that have become saline-sodic can be reclaimed with tile drains installed at a depth of 30 inches with a 30-foot spacing. The glacial till at the experimental site occurred at a depth of 2 to 3 feet below the surface and was slowly permeable. Only after the application of 71 inches of water was the saline-sodic soil sufficiently reclaimed to allow normal plant growth. Some decrease in salt concentration was found below the tile drains. There was no difference in salt movement with respect to proximity to the tile lines. The development of non-saline-sodic soils was not evident during the trial. Most of the gypsum applied during the trial remained in the surface 6 inches after the final water application.


2000 ◽  
Vol 126 (4) ◽  
pp. 223-233 ◽  
Author(s):  
R. Ali ◽  
R. L. Elliott ◽  
J. E. Ayars ◽  
E. W. Stevens

1984 ◽  
Vol 70 (1-4) ◽  
pp. 177-198 ◽  
Author(s):  
M.J. Hendry ◽  
R.G.L. McCready ◽  
W.D. Gould

1999 ◽  
Vol 39 (8) ◽  
pp. 949 ◽  
Author(s):  
E. G. Barrett-Lennard ◽  
C. V. Malcolm

Summary. This paper examines the accumulation of soil chloride and the increase in electrical conductivity of the groundwater beneath stands of saltbushes (Atriplex species) in a plant spacing trial conducted near Kellerberrin in Western Australia. The trial had a randomised block design with 5 plant spacings (1 by 1 m, 1 by 2 m, 2 by 2 m, 2 by 3 m, and 3 by 3 m), 5 saltbush species (Atriplex undulata D. Dietr., A. amnicola Paul G. Wilson, A. vesicaria Heward ex Benth., A. paludosa R. Br. and A. bunburyana F. Muell.) and 3 replicate plots (each consisting of 25 plants in 5 by 5 array). The saline groundwater at the site was between 0.5 and 1.2 m below the surface for the duration of the experiment. Over a 2-year period there was a substantial increase in soil chloride concentration beneath the saltbushes. These increases were proportional to saltbush ‘leaf density’ (weight per unit soil surface area) and inversely proportional to the initial concentration of chloride in the soil. There was a substantial increase in the electrical conductivity of the groundwater which was also proportional to ‘leaf density’. It is argued that the increases in soil salinity and groundwater electrical conductivity were primarily due to the use of groundwater by the saltbush stands. Salt accumulation data suggest that about 60–100 mm of groundwater was used (transpiration and evaporation) over the 2 years. These results are discussed in terms of the ability of saltbushes to lower local watertables, thereby making saline soils better suited to the growth of superior annual pasture species.


Sign in / Sign up

Export Citation Format

Share Document