RELATIONSHIP BETWEEN EVAPOTRANSPIRATION BY WHEAT AND THE STAGE OF CROP DEVELOPMENT, BELLANI-PLATE EVAPORATION, AND SOIL MOISTURE CONTENT

1965 ◽  
Vol 45 (1) ◽  
pp. 33-38 ◽  
Author(s):  
W. S. Ferguson

Mean weekly evapotranspiration by spring wheat at Brandon, Man. (1955–1959) was dependent on the stage of development of the crop. It increased from 0.70 in. per week at the 3-leaf stage to 1.45 in. per week at the flowering stage and decreased to 0.60 in. per week as the crop reached maturity. Evapotranspiration was correlated positively with Bellani-plate evaporation when the soil was moist to the surface and correlated negatively when the surface soil was dry, but total soil moisture was greater than 50% of field capacity. When the soil moisture was less than 50% of field capacity evapotranspiration was not correlated with Bellani-plate evaporation. Evapotranspiration was correlated positively with total soil moisture plus rainfall. This emphasizes the importance of moisture stress in limiting evapotranspiration in a semi-arid region.

1975 ◽  
Vol 51 (5) ◽  
pp. 196-199 ◽  
Author(s):  
R. J. Day ◽  
G. R. MacGillivray

The root regenerating potential of fall-lifted 2+0 white spruce nursery stock is described after transplanting into soil-maintained at 8, 10 and 15% soil moisture content (SMC) in glass fronted root boxes. At 15% SMC (0.1 bar soil moisture tension), which is close to field capacity, root regeneration began 10 days after transplanting and root elongation continued at a high rate for the remainder of a 40-day study period. At 10% SMC (0.6 bar SMT) root regeneration was delayed until 20 days after transplanting and root elongation was at a slower rate. At 8% SMC (1.5 bars) root regeneration and elongation was negligible. Plant moisture stress measured at 40 days was least when root regeneration was most and vice versa. The results suggest that field planting of white spruce in soils with moisture tensions of over 0.6 bar will be hazardous.


1966 ◽  
Vol 17 (3) ◽  
pp. 269 ◽  
Author(s):  
RA Fischer ◽  
GD Kohn

Trials were conducted in 1961 and 1962 at Wagga in southern New South Wales to investigate the yield physiology of the wheat crop. Various cultural treatments were applied to a single variety (Heron). The increases in evapotranspiration and associated reductions in total soil moisture content caused by early sowing, by heavier fertilizer applications, and to a lesser extent by a heavier rate of sowing were reflected in an increased plant moisture stress (reduced leaf relative turgidity) at a given time in the spring. At a given stage of development, however, relative turgidity was not much affected by time of sowing, and in fact post-flowering plant moisture stress increased with later sowing. There were only small treatment effects on the estimated depth and density of rooting. Relatively little water was extracted by crops from below 40 in.; dense crops reduced the soil moisture content throughout the root zone to less than the –15 bar value. Leaf relative turgidity at sunrise showed a consistent inverse relationship to soil moisture content in the root zone. Leaf turgidity (sunrise) was maintained at 100% until root zone moisture levels approached the –15 bar value.


2013 ◽  
Vol 742 ◽  
pp. 272-277
Author(s):  
Liang Shan Feng ◽  
Zhan Xiang Sun ◽  
Jia Ming Zheng

In this study, the results showed that water is the most important factor to affect crop yields and optimum soil moisture is lower under the conditions of peanut-and-millet interplanting. Thus, peanut-and-millet interplanting is generally able to fit most of the semi-arid region. In the interaction of various factors, the coupling effect of water and phosphorus was stronger than the coupling effect of fertilizers, following by the coupling effect of water and nitrogen. Among peanuts factors of water, nitrogen, and multi-factorial interaction of water, nitrogen, and phosphorus, water and nitrogen showed a negative effect, whereas the two-factor interactions had a positive effect. There were some differences between peanut and millet in the need for water and fertilizer, in which peanut required more nitrogen and millet needed slightly higher soil moisture and phosphorus. When other factors were in rich level, both of the optimal value for single factors of water, nitrogen, and phosphorus and the optimal value for two-factor interactions of water-nitrogen, water-phosphorus, and nitrogen-phosphorus, were higher than the optimal value for the interaction of water, nitrogen, and phosphorus. The tiny demand difference on moisture in peanut-millet interplanting could be compromised by configuring a reasonable interplanting population structure and the corresponding demand difference on fertilizer could be resolved by uneven crop planting strips. Under the condition of water-nitrogen-phosphorus interaction, the soil moisture content optimal for peanut accounted for 57.3% of the field capacity, and the related appropriate application rates of nitrogen and phosphorus were 0.98 g/pot (81.18 kg/hm2) and 0.39g/pot (32.18 kg/hm2), respectively. Likewise, the soil moisture content optimal for millet was 59.1% of the field capacity, and the counterpart appropriate application rates of nitrogen and phosphorus were 0.57 g/pot (47.03 kg/hm2) and 0.45g / pot (37.13 kg/hm2), respectively.


Author(s):  
André L. B. de O. Silva ◽  
Regina C. M. Pires ◽  
Rafael V. Ribeiro ◽  
Eduardo C. Machado ◽  
Gabriel C. Blain ◽  
...  

ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.


1965 ◽  
Vol 45 (2) ◽  
pp. 171-176 ◽  
Author(s):  
J. C. Wilcox

Drainage curves following irrigation were determined at six depths in eight soils having unrestricted drainage but varying widely in soil texture. The field capacities were determined under relatively high rates of evapotranspiration. The time after irrigation that it was necessary to wait before sampling the soil, to determine field capacity, was also determined. A high positive correlation was obtained between the log of field capacity in inches and the log of time after irrigation at which to sample the soil. The time varied from about 0.5 day with 1.5 in. field capacity to 4.0 days with 35 in. From the curves of soil moisture content versus time, the errors caused by sampling too soon or too late were determined. The percentage error (i.e. percent of field capacity) increased with an increase in the error in time of sampling; it decreased with an increase in field capacity in inches; and it was greater when sampling was too soon than when it was too late.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3223
Author(s):  
Hamed Adab ◽  
Renato Morbidelli ◽  
Carla Saltalippi ◽  
Mahmoud Moradian ◽  
Gholam Abbas Fallah Ghalhari

Soil moisture is an integral quantity parameter in hydrology and agriculture practices. Satellite remote sensing has been widely applied to estimate surface soil moisture. However, it is still a challenge to retrieve surface soil moisture content (SMC) data in the heterogeneous catchment at high spatial resolution. Therefore, it is necessary to improve the retrieval of SMC from remote sensing data, which is important in the planning and efficient use of land resources. Many methods based on satellite-derived vegetation indices have already been developed to estimate SMC in various climatic and geographic conditions. Soil moisture retrievals were performed using statistical and machine learning methods as well as physical modeling techniques. In this study, an important experiment of soil moisture retrieval for investigating the capability of the machine learning methods was conducted in the early spring season in a semi-arid region of Iran. We applied random forest (RF), support vector machine (SVM), artificial neural network (ANN), and elastic net regression (EN) algorithms to soil moisture retrieval by optical and thermal sensors of Landsat 8 and knowledge of land-use types on previously untested conditions in a semi-arid region of Iran. The statistical comparisons show that RF method provided the highest Nash–Sutcliffe efficiency value (0.73) for soil moisture retrieval covered by the different land-use types. Combinations of surface reflectance and auxiliary geospatial data can provide more valuable information for SMC estimation, which shows promise for precision agriculture applications.


1985 ◽  
Vol 15 (6) ◽  
pp. 1194-1195
Author(s):  
Robert S. McAlpine ◽  
Thomas G. Eiber

Weather data from Upsala and Atikokan, Ontario, were used to determine the Canadian Forest Fire Weather Index System values and to calculate the soil moisture for two soil types using the Thornthwaite water balance. The Duff Moisture Code and the Drought Code were found to give excellent correlations with the total soil moisture content under most weather patterns.


1978 ◽  
Vol 58 (2) ◽  
pp. 347-356
Author(s):  
W. N. BLACK

Irrigation and nitrogen (N) requirements of a natural pasture sward were studied on a Charlottetown sandy loam soil over a 5-yr period. The soil moisture content at the 0-to 15- and 15- to 30-cm depths was determined at from 7- to 10-day intervals, while irrometer soil moisture readings at 15-, 30-, and 45-cm depths were recorded more frequently during the grazing seasons. Soil moisture content in irrigated plots averaged 92 and 94% of field capacity, respectively, at 0- to 15- and 15- to 30-cm sampling depths. In non-irrigated plots, corresponding values were 77 and 82%. N treatments resulted in significant dry matter (DM) increases over untreated plots. Yield differences among plots receiving 56, 84, and 112 kg of N/ha in mid-June and again in mid-August were not significant. Early spring and September applications of N at 56 kg/ha, combined with mid-June and early August supplements of N at 84 kg/ha were superior to all other treatments in prolonging the grazing period. Neither irrigation nor N affected the characteristic yield decline of naturally occurring forage species in mid- and late-season. Mean DM production for the 5-yr period, and for years, showed no significant N treatment × moisture level interaction. While irrigation failed to increase yields significantly, livestock preferred to graze the irrigated plots. As a result of less competition from grasses, volunteer white clover became better established, and constituted a larger percentage of the sward than on non-irrigated plots.


Sign in / Sign up

Export Citation Format

Share Document