scholarly journals EFFECTS OF FERTILIZER N AND SOIL MOISTURE ON YIELD, YIELD COMPONENTS, PROTEIN CONTENT AND N ACCUMULATION IN THE ABOVEGROUND PARTS OF SPRING WHEAT

1977 ◽  
Vol 57 (3) ◽  
pp. 311-327 ◽  
Author(s):  
C. A. CAMPBELL ◽  
H. R. DAVIDSON ◽  
F. G. WARDER

The accumulation of aboveground dry matter (DM) and nitrogen (N) by spring wheat (T. aestivum L. cv. Manitou) grown on stubble land in lysimeters at two moisture levels (irrigation and natural rainfall) and seven rates of N was measured at five sampling dates. With irrigation, DM increased exponentially with time and N fertilization. This also occurred on dryland except between shot blade and anthesis when DM accumulated more slowly and plants lost 20% of their N at application rates > 61.5 kg N/ha. Rainfall after anthesis increased grain yields of dryland crops fertilized with > 61.5 kg N/ha more than those receiving less N because the former plants still had residual fertilizer N available to them. Grain yield response to N fertility followed the law of diminishing returns on irrigated land, but on dryland the relationship fitted a logarithmic growth curve. Grain yield when neither water nor N was added was 1,600 kg/ha; it increased by 71, 47 and 300% when water, 164 kg N/ha, and water plus 164 kg N/ha, respectively, were applied. On dryland, grain protein was 15.4% with no N applied and 17.0% at rates > 61.5 kg/ha; on irrigation, it increased from 14.1 to 15.7% with increasing N levels. Number of heads and kernels and kernel weight were increased by irrigation but only the two former parameters were increased by N. Dry matter accumulation was related to N concentration in plants by: DM = (%N)−k where k was < 1. N accumulated in plants at a faster rate than DM. The maximum rate of N accumulation was not affected by moisture; it was highest (4.7 kg N/ha/day) at a fertilizer rate of 123 kg N/ha. Irrigated plants recovered one-half or more of the fertilizer N, and dryland plants recovered one-quarter to one-third. Fertilizer recovery decreased with increasing fertilizer N. At maturity more than 70% of the N in the aboveground plant parts was located in the grain; N fertilizer had little effect on this porportion but drought during flowering retarded translocation of assimilates to the grain.

1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


1979 ◽  
Vol 59 (3) ◽  
pp. 603-626 ◽  
Author(s):  
C. A. CAMPBELL ◽  
H. R. DAVIDSON

The effects of early moisture stress [tillering (Tg) to last leaf visible (LLV)], late moisture stress [LLV to anthesis (AN)], and three rates of N fertilizer (44, 88 and 132 kg N/ha) on the development and moisture use characteristics of spring wheat (Triticum aestivum L. ’Manitou’) were determined under simulated irrigation in the growth chamber at day/night temperatures of 27 °C/12 °C (T27/12) and 22 °C/12 °C (T22/12). Plant height was unaffected by N and by early stress, but was reduced by late stress. Number of tillers increased until LLV, then decreased sharply and remained constant to maturity. More tillers were initiated at T27/12 than at T22/12, but by maturity there was little difference. Leaf blade photosynthetic area reached its maximum at LLV, while the non-leaf blade photosynthetic area reached its maximum at AN and constituted 75% of the total photosynthetic area at the milk dough stage. Heads comprised no more than 9% of the photosynthetic area at any time. Total plant matter accumulated sigmoidally, but at T27/12 and low N rates, plants lost total dry weight after the milk dough stage. Dry matter of the vegetative plant parts increased until the milk dough stage, then stems in particular, and roots to a lesser extent, lost weight. Head weight increased linearly at about 17.5 mg/head/day. Dry matter accumulation was directly proportional to N applied, inversely related to temperature, temporarily retarded by early stress and markedly reduced by late stress. Although stems were the dominant vegetative dry matter sink, leaves were the dominant N sink. A combination of high temperature, high N and moisture stress resulted in a temporary loss of N from the plants between LLV and the milk dough stage. As maturation proceeded, N assimilates appeared to move from leaves to roots into stems and thence into heads. The average rate of N accumulation in the heads was 0.22 and 0.27 mg/head/day at T22/12 and T27/12, respectively. Some N was lost by denitrification. The amount and rate of evapotranspiration were directly proportional to N applied and in general inversely related to moisture stress. The rate of moisture use was generally more rapid at T27/12, but the amount used was no different from that at T22/12. Plants stressed early recovered and used water at the same rate as unstressed plants, but plants stressed late did not recover.


2004 ◽  
Vol 84 (3) ◽  
pp. 845-854 ◽  
Author(s):  
B. J. Zebarth ◽  
Y. Leclerc ◽  
G. Moreau

This study evaluated rate and timing of N fertilization effects on the N use efficiency characteristics of rain-fed Russet Burbank potato. Trials conducted in 1999–2001 included different rates of fertili zer N (0–160 kg N ha-1 in 1999 and 0–200 kg N ha-1 in 2000 and 2001) applied either at planting according to normal grower practice, or at hilling, the latest time that granular fertilizer can practically be applied. Whole-plant dry matter and N accumulation were determined at topkill. Soil inorganic N content was measured to 30-cm depth at planting and at tuber harvest. Soil N supply (plant N accumulation plus soil inorganic N content at harvest with no fertilizer N applied) varied from 77 to 146 kg N ha-1 depending on the year. Crop N supply (soil N supply plus fertilizer N applied) was a better predictor of plant N accumulation than fertilizer N rate, and was used to remove the confounding effect of variation in soil N supply when making among-year comparisons for N use efficiency characteristics. Nitrogen uptake efficiency (NUpE; plant N accumulation/crop N supply) decreased with increasing rates of N applied at hilling N rate in 1999, which was a dry year, but was not influenced by at-hilling N rate in 2000 and 2001, or by at-planting N rate in any year. Nitrogen use efficiency (NUE; dry matter accumulation/crop N supply) and N utilization efficiency (NUtE; dry matter accumulation/plant N accumulation) decreased curvilinearly with increasing crop N supply in each year. Similar relationships between NUE and crop N supply, and between NUtE and plant N accumulation, among the 3 yr of the study suggest that these relationships are largely independent of seasonal climatic variation, and are primarily genetically controlled. Timing of N fertilization had no effect on any N use efficiency parameter, with the exception of reduced NUpE associated with split N application in 1999. This suggests that under rain-fed potato production in Atlantic Canada, timing of N fertilization has no significant effect on N use efficiency of Russet Burbank potato in years of adequate soil moisture, but NUpE may be decreased by split application of N in dry years. Key words: Solanum tuberosum, soil inorganic N, apparent fertilizer N recovery


1999 ◽  
Vol 50 (4) ◽  
pp. 513 ◽  
Author(s):  
C. J. Birch ◽  
G. L. Hammer ◽  
K. G. Rickert

The ability to predict accurately dry matter (DM) accumulation, partitioning, and thus final grain yield is crucial in crop simulation models. The objectives of the study were to measure radiation interception and radiation use efficiency, to quantify the distribution of DM among the various plant parts, and to develop improved methods of modelling DM accumulation and partitioning among plant parts. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1993 in south- eastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Data on DM accumulation, light interception, and canopy development were collected. The light extinction coefficient (k) did not differ among the cultivars. Radiation use efficiency was constant in each cultivar until close to physiological maturity, when a small decline was observed. Partitioning of DM between leaves and stems (until 90% of leaf tips had appeared) was described by a linear relationship between the proportion of DM allocated to leaves and the number of leaves present. Ear growth was described by a thermal-time-dependent equation from 150 degree-days (base temperature 8˚C) before silking to 115 degree-days after silking. Predictions of accumulation of grain yield by either components of yield (grain number per plant and individual grain weight) or daily increase in harvest index were assessed, but neither was entirely satisfactory, the former because of inaccurate prediction of grain number per plant, and the latter because of differences among cultivars in the daily increase in harvest index and terminal harvest index. Thus, the use of genotype-specific coefficients remains necessary. Throughout crop life, DM in stems can be predicted by difference, once DM is allocated to other plant parts. The relationships presented where leaf number mediates DM partitioning before silking simplify modelling of DM accumulation and partitioning in maize.


2001 ◽  
Vol 136 (2) ◽  
pp. 179-189 ◽  
Author(s):  
N. H. NAM ◽  
Y. S. CHAUHAN ◽  
C. JOHANSEN

Four extra-short-duration (ESD) lines in 1991 and eight ESD lines in 1992 were grown with adequate soil moisture throughout their growth or subjected to drought coinciding with the vegetative, flowering and pod-filling stages under rainout shelters. In both years, drought stress treatments significantly reduced dry matter accumulation and grain yield. The extent of reduction in grain yield varied with the line and stage of stress imposition. Drought stress at the flowering stage caused greater reduction in total dry matter and grain yield than the stress imposed during the pre-flowering and pod-filling stages. Drought stress coinciding with the flowering stage reduced grain yield by 40–55% in 1991 and 15–40% in 1992 in different lines. ESD genotypes could extract moisture from up to a metre depth during pre-flowering and flowering stage stress but less so during the pod-filling stage stress. Genotype ICPL 88039, followed by ICPL 89021, showed consistently lowest sensitivity to drought stress at flowering. Protracted drought stress commencing from the pre-flowering to flowering or from the flowering to pod-filling stages was more harmful than stress at the individual stages. The reduction in yield under drought stress could be attributed mainly to less total dry matter accumulation, but also increased abscission of plant parts. The results suggest variation in sensitivity of ESD lines in relation to timing of stress, which should facilitate targeted screening for different intermittent moisture stress environments.


1994 ◽  
Vol 74 (2) ◽  
pp. 279-285 ◽  
Author(s):  
G. Tremblay ◽  
C. Vasseur

Although bioclimatic conditions of the Saint Lawrence Lowlands are generally good enough to grow wheat for bread, management of this wheat production is poorly known in Quebec. Yields and total above-ground dry-matter biomass of three spring wheat (Triticum aestivum L.) cultivars (Max, Columbus and Katepwa) were measured in 1991 and 1992 under three management systems on a clay loam soil of the Saint Lawrence Lowlands. Reduced (50 kg N ha−1 and 375 plants m−2), conventional (100 kg N ha−1 and 375 plants m−2) and intensive (150 kg N ha−1 and 450 plants m−2) management systems were compared. In 1991, significant differences were observed among cultivars for four variables: stem weight, harvest index, tillers per square metre, and 1000-kernel weight. The management effect is less important than the cultivar effect. In 1992, significant differences among cultivars were observed for six of the nine variables measured, and seven of the nine variables measured differed with management. No significant cultivar × management interactions were observed in either year. Increasing input levels did not increase yield in 1991, probably because of the drier conditions. In the cooler and rainy growing season of 1992, intensive management increased wheat yield compared with that of reduced and conventional management. In both years, grain yield under reduced management was not significantly different from that under conventional management. Grain yield under intensive management was significantly higher than under reduced and conventional management in 1992 but not in 1991. The results of this study did not clearly show that intensive management was really better in the climatic conditions of the Saint Lawrence Lowlands than conventional or reduced management. Key words: Spring wheat, management, nitrogen, yield, dry matter, harvest index


1987 ◽  
Vol 108 (3) ◽  
pp. 609-615 ◽  
Author(s):  
I. Papastylianou ◽  
Th. Samios

SummaryUsing data from rotation studies in which barley or woollypod vetch were included, both cut for hay and preceding barley for grain, it is shown that forage barley gave higher dry-matter yield than woollypod vetch (3·74 v. 2·92 t/ha per year). However, the latter gave feedingstuff of higher nitrogen concentration and yield (86 kg N/ha per year for vetch v. 55 kg N/ha per year for barley). Rainfall was an important factor in controlling the yield of the two forages and the comparison between them in different years and sites. Barley following woollypod vetch gave higher grain yield than when following forage barley (2·36 v. 1·91 t/ha). Rotation sequences which included woollypod vetch had higher output of nitrogen (N) than input of fertilizer N with a positive value of 44–60 kg N/ha per year. In rotations where forage barley was followed by barley for grain the N balance between output and input was 5–6 kg N/ha. Total soil N was similar in the different rotations at the end of a 7-year period.


1977 ◽  
Vol 28 (2) ◽  
pp. 165 ◽  
Author(s):  
RA Fischer ◽  
I Aguilar ◽  
DR Laing

Experiments to study the effect of grain number per sq metre on kernel weight and grain yield in a high-yielding dwarf spring wheat (Triticum aestivum cv. Yecora 70) were conducted in three seasons (1971–1973) under high-fertility irrigated conditions in north-western Mexico. Crop thinning, shading and carbon dioxide fertilization (reported elsewhere), and crowding treatments, all carried out at or before anthesis, led to a wide range in grain numbers (4000 to 34,000/m2). Results indicated the response of grain yield to changing sink size (grains per sq metre), with the post-anthesis environment identical for all crops each year, and with all but the thinner crops intercepting most of the post-anthesis solar radiation. Kernel weight fell linearly with increase in grain number over the whole range of grain numbers studied, but the rate of fall varied with the season. Grain yield, however, increased, reaching a maximum at grain numbers well above those of crops grown with optimal agronomic management but without manipulation. It was concluded that the grain yield in normal crops was limited by both sink and post-anthesis source. There was some doubt, however, as to the interpretation of results from crowded crops, because of likely artificial increases in crop respiration on the one hand, and on the other, in labile carbohydrate reserves in the crops at anthesis. Also deterioration in grain plumpness (hectolitre weight) complicates the simple inference that further gains in yield can come from increased grain numbers alone.


Sign in / Sign up

Export Citation Format

Share Document