A STUDY OF ONIONS GROWN IN MICROPLOTS ON THREE ORGANIC SOILS EACH CONTAINING FOUR LEVELS OF COPPER

1983 ◽  
Vol 63 (2) ◽  
pp. 221-228 ◽  
Author(s):  
S. P. MATHUR ◽  
R. B. SANDERSON ◽  
A. BELANGER ◽  
M. VALK ◽  
E. KNIBBE ◽  
...  

To assess effects of soil Cu on the yield and nutrition of a crop, onions (Allium cepa ’Autumn Spice’) were grown in field microplots at sites A (peat), B (muck) and C (mucky peat). The surface layers (0–20 cm) of the plots contained four levels of residual fertilizer Cu up to 1200 ppm (wt/wt) at sites A and B and up to 600 ppm at site C. The highest Cu treatment at sites A and B contained about 4–6 times the Cu required for mitigating the excessive decomposition and subsidence of such organic soils. Neither the Cu treatment level nor the total soil Cu concentration influenced crop yields at sites B or C. Crop yield responded positively to the two highest Cu treatment levels at site A where the background level of soil Cu was the lowest among the three sites. The Cu concentrations in the crop at all sites were below the level considered to be phytotoxic (20 ppm). Fe and Zn contents in plants were also not depressed by higher Cu concentrations except for foliar Fe on the highest Cu treatment plots at site A. These plots were intrinsically poorer in Fe than those treated with lesser Cu. Foliar Fe:Cu and Zn:Cu ratios were also lowest, but not below adverse levels, for the highest Cu treatment levels at sites A and B, respectively. Even the highest levels of soil Cu did not reduce N supply for, or N nutrition of, the onion crop, or alter the crop concentrations or uptakes of P, K, Ca, Mg and Mn. Key words: Copper, onions, subsidence, histosol, muck, peat

1990 ◽  
Vol 70 (4) ◽  
pp. 717-721 ◽  
Author(s):  
UMESH C. GUPTA ◽  
P. V. LEBLANC ◽  
E. W. CHIPMAN

Studies were conducted on peat soils to determine the effect of Mo application on crop yields and plant tissue Mo concentrations. In a greenhouse experiment Mo applications resulted in highest crop yield increases for cauliflower with lesser increases for onions and red clover. Plant tissue Mo levels of less than 0.06, 0.04, and 0.03 mg kg−1 in onions, cauliflower, and red clover, respectively were in the deficiency range. Sufficiency levels for Mo were 0.1 mg kg−1 for onions, 0.07 mg kg−1 for cauliflower, and 0.27 mg kg−1 for red clover. No response to Mo was found on carrots even at plant tissue Mo concentrations as low as 0.04 and 0.15 mg kg−1 under greenhouse and field experiments, respectively. In the field study liming and Mo both increased carrot leaf Mo concentrations but only liming increased carrot yields. Key words: Molybdenum concentration, vegetables, red clover, sphagnum peat, liming


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2021 ◽  
Vol 13 (12) ◽  
pp. 2249
Author(s):  
Sadia Alam Shammi ◽  
Qingmin Meng

Climate change and its impact on agriculture are challenging issues regarding food production and food security. Many researchers have been trying to show the direct and indirect impacts of climate change on agriculture using different methods. In this study, we used linear regression models to assess the impact of climate on crop yield spatially and temporally by managing irrigated and non-irrigated crop fields. The climate data used in this study are Tmax (maximum temperature), Tmean (mean temperature), Tmin (minimum temperature), precipitation, and soybean annual yields, at county scale for Mississippi, USA, from 1980 to 2019. We fit a series of linear models that were evaluated based on statistical measurements of adjusted R-square, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). According to the statistical model evaluation, the 1980–1992 model Y[Tmax,Tmin,Precipitation]92i (BIC = 120.2) for irrigated zones and the 1993–2002 model Y[Tmax,Tmean,Precipitation]02ni (BIC = 1128.9) for non-irrigated zones showed the best fit for the 10-year period of climatic impacts on crop yields. These models showed about 2 to 7% significant negative impact of Tmax increase on the crop yield for irrigated and non-irrigated regions. Besides, the models for different agricultural districts also explained the changes of Tmax, Tmean, Tmin, and precipitation in the irrigated (adjusted R-square: 13–28%) and non-irrigated zones (adjusted R-square: 8–73%). About 2–10% negative impact of Tmax was estimated across different agricultural districts, whereas about −2 to +17% impacts of precipitation were observed for different districts. The modeling of 40-year periods of the whole state of Mississippi estimated a negative impact of Tmax (about 2.7 to 8.34%) but a positive impact of Tmean (+8.9%) on crop yield during the crop growing season, for both irrigated and non-irrigated regions. Overall, we assessed that crop yields were negatively affected (about 2–8%) by the increase of Tmax during the growing season, for both irrigated and non-irrigated zones. Both positive and negative impacts on crop yields were observed for the increases of Tmean, Tmin, and precipitation, respectively, for irrigated and non-irrigated zones. This study showed the pattern and extent of Tmax, Tmean, Tmin, and precipitation and their impacts on soybean yield at local and regional scales. The methods and the models proposed in this study could be helpful to quantify the climate change impacts on crop yields by considering irrigation conditions for different regions and periods.


1992 ◽  
Vol 24 (2) ◽  
pp. 23-32 ◽  
Author(s):  
James W. Pease

AbstractForecast distributions based on historical yields and subjective expectations for 1987 expected crop yields were compared for 90 Western Kentucky grain farms. Different subjective probability elicitation techniques were also compared. In many individual cases, results indicate large differences between subjective and empirical moments. Overall, farmer expectations for 1987 corn yields were below those predicted from their past yields, while soybean expectations were above the historical forecast. Geographical location plays a larger role than crop in comparisons of relative variability of yield. Neither elicitation technique nor manager characteristics have significant effects on the comparisons of the forecasts.


2015 ◽  
Vol 89 ◽  
pp. 150-161 ◽  
Author(s):  
Antonella Scalise ◽  
Demetrio Tortorella ◽  
Aurelio Pristeri ◽  
Beatrix Petrovičová ◽  
Antonio Gelsomino ◽  
...  

Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


1970 ◽  
Vol 20 (2) ◽  
pp. 147-154 ◽  
Author(s):  
AS Bhuiyan ◽  
S Akhter ◽  
MMA Quddus

Diurnal vertical migration of four genera of cladocerans, namely Diaphanosoma sp., Daphnia sp., Moina sp. and Bosmina sp., during March to December, 2007 showed that the number of Diaphanosoma sp. was 501 units/1 in the surface layers, 172 units/l in the middle layers and 190 units/l in the bottom layers. The yearly number of Daphnia sp. in surface, middle and bottom layerss was 362 units/l, 46 units/l and 189 units/l respectively. In surface, bottom and middle layers, the number of Moina sp. was 159, 71 and 32 units/l, respectively. Bosmina sp. was 78 units/l in surface, 31 units/l in the middle and 33 units/l in the bottom layers. The number of Diaphanosoma sp., Daphnia sp., Moina sp., Bosmina sp., were 455, 149, 259 and 358 units/l, respectively in the morning, 63, 176, 142, 43 units/l at noon and 107, 55, 28, 59 units/l, respectively in the evening. Throughout the study period the cladocerans were always abundant near the surface during morning and evening. Among the factors responsible for the diurnal movement of cadoceran, light played the most important factor. The relationship between the physico-chemical factors and the cladoceran occurrence in the pond was also explored. Key words: Cladocera; Diurnal migration; Physico-chemical parameters; Fish pond DOI: http://dx.doi.org/10.3329/dujbs.v20i2.8975 DUJBS 2011; 20(2): 147-154


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


Sign in / Sign up

Export Citation Format

Share Document