scholarly journals Predicting Need for Phosphorus Fertilizer by Soil Testing During Seeding of Cool Season Grasses

HortScience ◽  
2006 ◽  
Vol 41 (7) ◽  
pp. 1690-1697 ◽  
Author(s):  
Stephanie C. Hamel ◽  
Joseph R. Heckman

Recent changes in soil testing methodology, the important role of P fertilization in early establishment and soil coverage, and new restrictions on P applications to turf suggest a need for soil test calibration research on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb), and perennial ryegrass (Lolium perenne L.). Greenhouse and field studies were conducted for 42 days to examine the relationship between soil test P levels and P needs for rapid grass establishment using 23 NJ soils with a Mehlich-3 extractable P ranging from 6 to 1238 mg·kg–1. Soil tests (Mehlich-1, Mehlich-3, and Bray-1) for extractable P were performed by inductively coupled plasma–atomic emission spectroscopy (ICP). Mehlich-3 extractable P and Al were measured to evaluate the ratio of P to Al as a predictor of need for P fertilizer. Kentucky bluegrass establishment was more sensitive to low soil P availability than tall fescue or perennial ryegrass. Soil test extractants Mehlich-1, Bray-1, or Mehlich-3 were each effective predictors of need for P fertilization. The ratio of P to Al (Mehlich-3 P/Al %) was a better predictor of tall fescue and perennial ryegrass establishment response to P fertilization than soil test P alone. The Mehlich-1, Bray-1, and Mehlich-3 soil test P critical levels for clipping yield response were in the range of 170 to 280 mg·kg–1, depending on the soil test extractant, for tall fescue and perennial ryegrass. The Mehlich-3 P/Al (%) critical level was 42% for tall fescue and 33% for perennial ryegrass. Soil test critical levels, based on estimates from clipping yield data, could not be determined for Kentucky bluegrass using the soils in this study. Soil testing for P has the potential to aid in protection of water quality by helping to identify sites where P fertilization can accelerate grass establishment and thereby prevent soil erosion, and by identifying sites that do not need P fertilization, thereby preventing further P enrichment of soil and runoff. Because different grass species have varying critical P levels for establishment, both soil test P and the species should be incorporated into the decision-making process regarding P fertilization.

2021 ◽  
Vol 13 (8) ◽  
pp. 4401
Author(s):  
Jeffrey M. Novak ◽  
James R. Frederick ◽  
Don W. Watts ◽  
Thomas F. Ducey ◽  
Douglas L. Karlen

Corn (Zea mays L.) stover is used as a biofuel feedstock in the U.S. Selection of stover harvest rates for soils is problematic, however, because excessive stover removal may have consequences on plant available P and K concentrations. Our objective was to quantify stover harvest impacts on topsoil P and K contents in the southeastern U.S. Coastal Plain Ultisols. Five stover harvest rates (0, 25, 50, 75 and 100% by wt) were removed for five years from replicated plots. Grain and stover mass with P and K concentration data were used to calculate nutrient removal. Mehlich 1 (M1)-extractable P and K concentrations were used to monitor changes within the soils. Grain alone removed 13–15 kg ha−1 P and 15–18 kg ha−1 K each year, resulting in a cumulative removal of 70 and 85 kg ha−1 or 77 and 37% of the P and K fertilizer application, respectively. Harvesting stover increased nutrient removal such that when combined with grain removed, a cumulative total of 95% of the applied P and 126% of fertilizer K were taken away. This caused M1 P and K levels to decline significantly in the first year and even with annual fertilization to remain relatively static thereafter. For these Ultisols, we conclude that P and K fertilizer recommendations should be fine-tuned for P and K removed with grain and stover harvesting and that stover harvest of >50% by weight will significantly decrease soil test M1 P and K contents.


1993 ◽  
Vol 73 (1) ◽  
pp. 123-128 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner

In the Canadian prairie, producers generally sample soils in the autumn for nutrient analyses, whereas calibration of crop responses has been made based on soils sampled in the spring prior to seeding. A recent report suggests that available phosphorus (P) in soil increases between autumn and spring. At Swift Current, Saskatchewan, we have monitored bicarbonate-extractable P (Olsen P) every autumn and spring for the past 24 years, in four cropping systems: continuous wheat (Cont W), fallow-wheat (F-W), and two fallow-wheat-wheat (F-W-W) rotations. The first three systems received nitrogen (N) and P each crop year, with one F-W-W rotation receiving only N. These data were analyzed to test the authenticity of the aforementioned observations. We found that although there were some apparent overwinter increases in Olsen P there were also some decreases. Further, because of the considerable variability in Olsen P, relatively few of the overwinter changes were significant (P = 0.10). Efforts to correlate the changes in Olsen P to overwinter temperature or precipitation were unsuccessful. We concluded that Saskatchewan soil testing laboratories need not make adjustments to P fertilizer recommendations to account for changes in overwinter soil test P levels. Key words: Soil testing, bicarbonate-extractable P, crop rotations, available P


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


Soil Research ◽  
1996 ◽  
Vol 34 (2) ◽  
pp. 243
Author(s):  
MDA Bolland ◽  
DG Allen

Five levels of phosphorus (P), as powdered single superphosphate, were incubated in moist soil (field capacity) for 42 days at 50�C in six different soils collected from south-western Australia. The soils were then air-dried for 7 days. Some subsamples of air-dry soil were stored for 180 days at 0�C in a cold room. Other subsamples were stored at fluctuating room temperature (18–25�C) in a laboratory and were sampled at 30, 60, 120, 150 and 180 days after storage to measure bicarbonate-extractable P (soil-test P) by the Olsen and Colwell procedures. No changes in soil-test P were detected while air-dry soil samples were stored at 0�C or room temperature.


Soil Research ◽  
2010 ◽  
Vol 48 (8) ◽  
pp. 682 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. K. Russell

Soil testing was conducted during 1999–2009 to determine lime and fertiliser phosphorus (P), potassium (K), and sulfur (S) requirements of intensively grazed, rain-fed, ryegrass dairy pastures in 48 paddocks on sand to sandy loam soils in the Mediterranean-type climate of south-western Australia. The study demonstrated that tissue testing was required in conjunction with soil testing to confirm decisions based on soil testing, and to assess management decisions for elements not covered by soil testing. Soil testing for pH was reliable for indicating paddocks requiring lime to ameliorate soil acidity, and to monitor progress of liming. Soil P testing proved reliable for indicating when P fertiliser applications were required, with no P being required when soil-test P was above the critical value for that soil, and when no P was applied, tissue testing indicated that P remained adequate for ryegrass production. Soil testing could not be used to determine paddocks requiring fertiliser K and S, because both elements can leach below the root-zone, with rainfall determining the extent of leaching and magnitude of the decrease in pasture production resulting from deficiency, which cannot be predicted. The solution is to apply fertiliser K and S each year, and use tissue testing to improve fertiliser K and S management. Research has shown that, for dairy and other grazing industries in the region, laboratories need measure and report every year soil pH and soil-test P only, together with measuring every 3–5 years the P-buffering index (estimating P sorption of soil), organic carbon content, and electrical conductivity.


2004 ◽  
Vol 44 (3) ◽  
pp. 353 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of semi and fully enclosed sports stadiums necessitates the ongoing selection, development and assessment of shade-tolerance in turfgrass species. Vertical shoot growth rate is a simple biological measure that may supplement visual turfgrass assessment and provide a useful measure of shade adaptation. Cool-season temperate turfgrasses; Kentucky bluegrass–perennial ryegrass (Poa pratensis L.–Lolium perenne L.), creeping bentgrass (Agrostis palustris Huds.), supina bluegrass (Poa supina Schrad.) and tall fescue (Festuca arundinacea Schreb.), and a warm season species, Bermudagrass (Cynodon dactylon L.), were established in pot and field experiments and subjected to 4 shade treatments (0, 26, 56 or 65% shade) under ambient conditions. Average light readings taken near the winter and summer solstice in full sunlight at midday, were 790 and 1980�μmol/m2.s, respectively. Field and pot trials confirmed supina bluegrass and tall fescue to have the greatest shade tolerance, producing high turf quality under 56 and 65% shade. However, all turfgrass species declined in quality under high shade levels as indicated by an increase in thin, succulent vertical growth, and a less-dense turf sward. Vertical shoot growth rates of all species increased linearly with increasing shade levels. Kentucky bluegrass–perennial ryegrass had the highest rate of increase in vertical shoot elongation under shade, approximately 3.5 times greater than supina bluegrass, which had the lowest. Low rates of increase in vertical shoot elongation under shade indicated shade tolerance whereas high rates inferred shade intolerance.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 525g-526
Author(s):  
N.M. El-Hout ◽  
C.A. Sanchez

The production of lettuce (Lactuca sativa L.) types other than crisphead (i.e., leaf, boston, bibb, and romaine) has recently increased due to expanding consumer demand. Fertilizer P recommendations for these lettuce types are largely based on soil-test calibrations for the crisphead type only. However, biomass production and morphological traits of the different lettuce types vary. Four field experiments were conducted to compare the relative efficiencies of these lettuce types to P fertilization. All lettuce types showed large yield and quality responses to P. Because environmental conditions affected yield potential, P rates required for optimal yield varied by lettuce type within experiments. However, the P rates required for optimal yield were similar over all experiments. Furthermore, the relationship between relative yield and soil-test P across all seasons showed a similar soil-test P level was required for maximum yield of all lettuce types. The results of this study show that soil-test-based fertilizer recommendations for crisphead lettuce may be adequate for all lettuce types


2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1517-1521 ◽  
Author(s):  
Joseph G. Robins ◽  
B. Shaun Bushman ◽  
Blair L. Waldron ◽  
Paul G. Johnson

As competition for water resources in areas of western North America intensify as a result of increasing human populations, the sustainability of turfgrass irrigation with limited water resources is questionable. A potential part of the solution is the use of recycled wastewater for landscape irrigation. However, as a result of high levels of salt, successful irrigation with recycled wastewater will likely need to be coupled with selection for increased salinity tolerance in turfgrass species. Additionally, salinity-tolerant turfgrass will allow production on soils with inherently high salt levels. The study described here characterized the relative salinity tolerance of 93 accessions of Poa germplasm from the USDA National Plant Germplasm System (NPGS). Control cultivars of tall fescue [Lolium arundinaceum (Schreb.) S.J. Darbyshire], perennial ryegrass (Lolium perenne L.), and kentucky bluegrass (Poa pratensis L.) were also evaluated for comparison. Kentucky bluegrass accessions exhibited a wide range of LD50 (salinity dosage necessary to kill 50% of plants) values from 811 ECdays (PI 369296 from Russia) to 1922 ECdays (PI 371768 from the United States). Five kentucky bluegrass accessions exhibited salinity tolerance equal to or better than that of the tall fescue (LD50 = 1815 ECdays) and perennial ryegrass (LD50 = 1754 ECdays) checks. Thus, there is sufficient variation within this species to develop bluegrass with substantially higher salinity tolerance.


2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


Sign in / Sign up

Export Citation Format

Share Document