scholarly journals Nutrient supply from organic amendments applied to unvegetated soil, lettuce and orchardgrass

2006 ◽  
Vol 86 (1) ◽  
pp. 21-33 ◽  
Author(s):  
A. M. Hammermeister ◽  
T. Astatkie ◽  
E. A. Jeliazkova ◽  
P. R. Warman ◽  
R. C. Martin

Organic sources of nutrients are increasingly being used in horticultural and certified organic production. The nutrient-supplying potentials of poultry manure compost (PM), feather meal (FM), alfalfa meal (AA) and vermicastings (VC) and an unamended control were measured in a growth room experiment. The amendments were applied at rates equivalent to 200, 400 and 800 kg total N ha-1 to a soil of low fertility. Nitrogen supply rates and concentrations were measured over 6 mo in unvegetated pots using PRS™ probes and KCl extraction, respectively. Biomass of lettuce (Lactuca sativa L.) and orchardgrass (Dactylis glomerata L.) and N uptake of orchardgrass were measured. Repeated measures analysis revealed significant amendment × rate × time interaction effects for N supply rate and concentration. Of total N applied, available N was 50 to 70% in the FM and PM treatments, 10 to 40% in the AA treatments, and 10% in the VC treatments. High rates of FM and PM were toxic to lettuce but produced good orchard grass yields. VC was safe for lettuce but low N availability limited long-term orchardgrass growth. Higher application rates did not result in corresponding increases in nutrient supply. Consideration should be given to balancing the ratio of available nutrients in amendments with plant requirements. Key words: Apparent nitrogen recovery, plant N uptake, feather meal, alfalfa meal, vermicastings, poultry manure compost

2008 ◽  
Vol 23 (03) ◽  
pp. 250-259 ◽  
Author(s):  
Derek H. Lynch ◽  
Zhiming Zheng ◽  
Bernie J. Zebarth ◽  
Ralph C. Martin

AbstractThe market for certified organic potatoes in Canada is growing rapidly, but the productivity and dynamics of soil N under commercial organic potato systems remain largely unknown. This study examined, at two sites in Atlantic Canada (Winslow, PEI, and Brookside, NS), the impacts of organic amendments on Shepody potato yield, quality and soil mineral nitrogen dynamics under organic management. Treatments included a commercial hog manure–sawdust compost (CP) and pelletized poultry manure (NW) applied at 300 and 600 kg total N ha−1, plus an un-amended control (CT). Wireworm damage reduced plant stands at Brookside in 2003 and those results are not presented. Relatively high tuber yields (~30 Mg ha−1) and crop N uptake (112 kg N ha−1) were achieved for un-amended soil in those site-years (Winslow 2003 and 2004) when soil moisture was non-limiting. Compost resulted in higher total yields than CT in one of three site-years. Apparent recovery of N from CP was negligible; therefore CP yield benefits were attributed to factors other than N availability. At Winslow, NW300, but not NW600, significantly increased total and marketable yields by an average of 5.8 and 7.0 Mg ha−1. Plant available N averaged 39 and 33% for NW300 and NW600, respectively. Soil (0–30 cm) NO3−-N at harvest was low (<25 kg N ha−1) for CT and CP, but increased substantially both in season and at harvest (61–141 kg N ha−1) when NW was applied. Most leaching losses of NO3−-N occur between seasons and excessive levels of residual soil NO3-N at harvest, as obtained for NW600, must be avoided. Given current premiums for certified organic potatoes, improving yields through application of amendments supplying moderate rates of N or organic matter appears warranted.


2013 ◽  
Vol 59 (No. 6) ◽  
pp. 235-240 ◽  
Author(s):  
Bordoloi LJ ◽  
Singh AK ◽  
Manoj-Kumar ◽  
Patiram ◽  
S. Hazarika

Plant&rsquo;s nitrogen (N) requirement that is not fulfilled by available N in soil has to be supplied externally through chemical fertilizers. A reliable estimate of soil N-supplying capacity (NSC) is therefore essential for efficient fertilizer use. In this study involving a pot experiment with twenty acidic soils varying widely in properties, we evaluated six chemical indices of soil N-availability viz. organic carbon (C<sub>org</sub>), total N (N<sub>tot</sub>), acid and alkaline-KMnO<sub>4</sub> extractable-N, hot KCl extractable-N (KCl-N) and phosphate-borate buffer extractable-N (PBB-N), based on their strength of correlation with available-N values obtained through aerobic incubation (AI-N) and anaerobic incubation (ANI-N), and also with the dry matter yield (DMY), N percentage and plant (maize) N uptake (PNU). In general, the soils showed large variability in NSC as indicated by variability in PNU which ranged from 598 to 1026 mg/pot. Correlations of the N-availability indices with AI-N and ANI-N decreased in the order: PBB-N (r = 0.784** and 0.901**) &gt; KCl-N (r = 0.773** and 0.743**) &gt; acid KMnO<sub>4</sub>-N (r = 0.575** and 0.651**) &ge; C<sub>org</sub> (r = 0.591** and 0.531**) &ge; alkaline KMnO<sub>4</sub>-N (r = 0.394** and 0.548**) &gt; N<sub>tot</sub> (r = 0.297** and 0.273*). Of all the indices evaluated, PBB-N showed the best correlations with plant parameters as well (r = 0.790** and 0.793** for DMY and PNU, respectively). Based on the highest correlations of PBB-N with biological indices as well as plant responses, we propose PBB-N as an appropriate index of N-availability in the acidic soils of India and other regions with similar soils.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Craig G. Cogger ◽  
Andy I. Bary ◽  
Elizabeth A. Myhre

As heat-dried biosolids become more widely produced and marketed, it is important to improve estimates of N availability from these materials. Objectives were to compare plant-available N among three different heat-dried biosolids and determine if current guidelines were adequate for estimating application rates. Heat-dried biosolids were surface applied to tall fescue (Festuca arundinaceaSchreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year plant-available N (estimated as urea N equivalent) for two biosolids exceeded 60% of total N applied, while urea N equivalent for the third biosolids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest USA recommend mineralization estimates of 35 to 40% for heat-dried biosolids, but this research shows that some heat-dried materials fall well above that range.


2005 ◽  
Vol 56 (5) ◽  
pp. 517 ◽  
Author(s):  
Y. Kliese ◽  
W. M. Strong ◽  
R. C. Dalal ◽  
N. W. Menzies

The appropriate use of wastes is a significant issue for the pig industry due to increasing pressure from regulatory authorities to protect the environment from pollution. Nitrogen contained in piggery pond sludge (PPS) is a potential source of supplementary nutrient for crop production. Nitrogen contribution following the application of PPS to soil was obtained from 2 field experiments on the Darling Downs in southern Queensland on contrasting soil types, a cracking clay (Vertosol) and a hardsetting sandy loam (Sodosol), and related to potentially mineralisable N from laboratory incubations conducted under controlled conditions and NO3– accumulation in the field. Piggery pond sludge was applied as-collected (wet PPS) and following stockpiling to dry (stockpiled PPS). Soil NO3– levels increased with increased application rates of wet and stockpiled PPS. Supplementary N supply from PPS estimated by fertiliser equivalence was generally unsatisfactory due to poor precision with this method, and also due to a high level of NO3– in the clay soil before the first assay crop. Also low recoveries of N by subsequent sorghum (Sorghum bicolor) and wheat (Triticum aestivum) assay crops at the 2 sites due to low in-crop rainfall in 1999 resulted in low apparent N availability. Over all, 29% (range 12–47%) of total N from the wet PPS and 19% (range 0–50%) from the stockpiled PPS were estimated to be plant-available N during the assay period. The high concentration of NO3- for the wet PPS application on sandy soil after the first assay crop (1998 barley, Hordeum vulgare) suggests that leaching of NO3– could be of concern when high rates of wet PPS are applied before infrequent periods of high precipitation, due primarily to the mineral N contained in wet PPS. Low yields, grain protein concentrations, and crop N uptake of the sorghum crop following the barley crop grown on the clay soil demonstrated a low residual value of N applied in PPS. NO3– in the sandy soil before sowing accounted for 79% of the variation in plant N uptake and was a better index than anaerobically mineralisable N (19% of variation explained). In clay soil, better prediction of crop N uptake was obtained when both anaerobically mineralisable N (39% of variation explained) and soil profile NO3– were used in combination (R2 = 0.49).


Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 719 ◽  
Author(s):  
M. T. Moroni ◽  
P. J. Smethurst ◽  
G. K. Holz

Several soil analyses were used to estimate available N in surface soils (0–10 cm) over a 2-year period at 5 sites that supported 1- to 4-year-old Eucalyptus nitens plantations, and once in subsoils (10–120 cm) at 3 of these sites. Soils were derived from basalt (1 site previously pasture, 1 Pinus radiate, and 2 native forest) or siltstone (previously native forest). Soil analyses examined were total N, total P, total C, anaerobically mineralisable N (AMN), hot KCl-extractable N (hot KCl-N), and NH4+ and NO3– in soil solution and KCl extracts. AMN, KCl-extractable NH4+ and NO3–, and soil solution NH4+ and NO3– varied considerably with time, whereas hot KCl-N, total N, total P, and total C were temporally stable except for a gradual decline in total C with time at one site. Only total P was correlated with net N mineralisation (NNM) across all sites (r2 = 0.91, P < 0.05, n = 5). At 2–3 years after planting, soil solution and KCl-extractable NO3– dropped below 0.1 mm N and 1 μg N/g soil, respectively, at sites with NNM ≤24 kg N/ha.year (n = 3). Sites with NNM ≤24 kg N/ha.year also had ≤0.8 Mg P/ha. Although concentrations of indices of soil N availability decreased with depth, the contribution of subsoil (10–120 cm depth) to total profile N availability was estimated to be at least twice that of the top 10 cm. At an ex-pasture site, high concentrations of mineral N were found at 75–105 cm depths (KCl-extractable N, 289.3 μg N/g soil; 2.8 mm mineral N in soil solution), which may have become available to plantations as their root systems developed.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1440-1449 ◽  
Author(s):  
Carolyn F. Scagel ◽  
Guihong Bi ◽  
Leslie H. Fuchigami ◽  
Richard P. Regan

Growth, nitrogen (N) uptake, and N storage were assessed in transplanted 1-year-old rhododendron liners. Two evergreen cultivars, Rhododendron ‘P. J. Mezitt Compact’ (PJM) and R. ‘English Roseum’ (ER), and one deciduous cultivar, R. ‘Gibraltar’ (AZ), were transplanted into 1-gal. pots and given liquid fertilizer with (+N) or without (–N) N. Increased N availability increased growth after July (ER, PJM) or August (AZ), and resulted in three to five times more total biomass. Biomass continued to increase after stem elongation and leaf production ceased. Nitrogen uptake was correlated with growth of all plant structures on AZ, whereas N uptake was only correlated with stem and leaf growth on evergreen cultivars. The rate of N uptake was highest before July for AZ (1.9 mg·d−1) and in August and September for the evergreen cultivars (≈5 mg·d−1). Thirteen percent to 16% of total N uptake from between May and February occurred after N fertilization ceased at the beginning of September. Plants contained the most N in October (AZ), November (PJM), or December (ER). Biomass loss after November accounted for a loss of 14% to 48% of the maximum total plant N content. Nitrogen demand by roots and stems increased from May to February in all cultivars. The role of new and old leaves in N storage on evergreen cultivars varied with cultivar and time. Differences in N storage between the evergreen cultivars occurred primarily in their roots and leaves. Over the winter, PJM stored more N in its roots, whereas ER stored more N in its leaves. Changes in N concentrations and contents in different plant structures after November indicate that, during early winter, N stored in other structures moves to roots and old stems of PJM, old stems of ER, and roots and new and old stems of AZ. These results suggest that fertilizer application strategies for transplanted liners of these cultivars should include low N availability after transplanting followed by high N availability in mid to late summer. This type of strategy will not only improve N uptake efficiency from fertilizer, but also will minimize N loss from the containers. The results also demonstrated that N uptake in the autumn may play an important role in supplementing plant N reserves required for growth during the next season as well as for balancing N losses incited by leaf abscission, root turnover, and maintenance functions that occur over winter.


2006 ◽  
Vol 16 (1) ◽  
pp. 39-42 ◽  
Author(s):  
T.K. Hartz ◽  
P.R. Johnstone

Limited soil nitrogen (N) availability is a common problem in organic vegetable production that often necessitates in-season fertilization. The rate of net nitrogen mineralization (Nmin) from four organic fertilizers (seabird guano, hydrolyzed fish powder, feather meal, and blood meal) containing between 11.7% and 15.8% N was compared in a laboratory incubation. The fertilizers were mixed with soil from a field under organic management and incubated aerobically at constant moisture at 10, 15, 20, and 25 °C. Nmin was determined on samples extracted after 1, 2, 4, and 8 weeks. Rapid Nmin was observed from all fertilizers at all temperatures; within 2 weeks between 47% and 60% of organic N had been mineralized. Temperature had only modest effects, with 8-week Nmin averaging 56% and 66% across fertilizers at 10 and 25 °C, respectively. Across temperatures, 8-week Nmin averaged 60%, 61%, 62%, and 66% for feather meal, seabird guano, fish powder, and blood meal, respectively. Cost per unit of available N (mineralized N + initial inorganic N) varied widely among fertilizers, with feather meal the least and fish powder the most expensive.


2020 ◽  
Vol 7 (2) ◽  
pp. 175-181
Author(s):  
Izzah Abd Hamid ◽  
Wan Asrina Wan Yahaya ◽  
Norziana Zin Zawawi

Cultivating a land without proper crop management may lead to diminished organic carbon. Thus, this study assesses the effects of long-term farming (2014 to 2018) on soil OC. This study was conducted in Share Farm II, Universiti Putra Malaysia Bintulu Sarawak Campus on a selected area that practiced crop rotation. Soil samples have been collected according to grid sampling techniques by beds row and inter-row, and are analysed for soil pH, OM, TOC, and total N. The results show a trend in the alleviation of soil acidity with 2018 > 2016 > 2014, however, there is a diminished of TOC as the year of cultivation increases from 3.42% to 1.87%. The results show insufficient crop residue that returns to the soil system which has been subjected to flash flood and poultry manure application. In return, C retention ability was reduced, which further limit OM capability to supply nutrients upon decomposition. The correlation analysis has revealed that different types of crop residue such as grass clippings that have been applied in 2016 may be another reason for the insufficient N availability (0.44%). Therefore, the quantity and quality of residues may affect the decomposition rate and provide a lower C/N ratio, which significantly affects the soil pH, total N, and other nutrients that are essential for crop uptake. Res. Agric., Livest. Fish.7(2): 175-181,  August 2020


1998 ◽  
Vol 49 (8) ◽  
pp. 1267 ◽  
Author(s):  
A. Kamoshita ◽  
R. C. Muchow ◽  
M. Cooper ◽  
S. Fukai

In Australia, grain sorghum [Sorghum bicolor (L.) Moench] hybrids are often grown under conditions of low soil nitrogen (N) availability with suboptimal levels of N fertiliser supplied. However, little is known about the traits that contribute to sorghum hybrid performance in environments with low available N. We examined plant traits that may contribute to adaptation of sorghum to low soil N conditions, and the influence of genotype × N environment interactions on yield and grain N concentration. Two experiments were conducted using 3–6 hybrids with similar phenology. Three N fertiliser application rates (0, 60, and 240 kg/ha) were used in Expt 1, and 2 application rates (0 and 60 kg/ha) were used in Expt 2. Hybrid yield was associated with plant N content at maturity. The ability of a hybrid to take up N continuously during grain filling, under N limiting conditions, was identified as an important component contributing to high yield. In the non-fertilised treatment of Expt 2, where plants suffered the most severe N limitation before anthesis (e.g. total plant N content at anthesis <3 g/m2), hybrid yield was associated with biomass production and duration of effective grain filling. The dependence of the expression of the higher N uptake trait on N availability and other environmental factors resulted in genotype × environment interactions for yield. Differences among hybrids in leaf senescence and grain growth rate had little effect on yield. Genotypic variation for grain N concentration was consistent across experiments for hybrids with and without the staygreen attribute. In Expt 2 the magnitude of leaf senescence and amount of N mobilised from leaf to grain were greater at 60 kg N/ha than in the non-fertilised treatment. In addition, the staygreen hybrid 72389–1-1–3/QL36 had a slower rate of leaf senescence, took up larger amounts of N after anthesis, and had higher grain N concentration (1·07%) than the senescent hybrids ATx623/RTx430 (0·95%) and QL41/69264–2-2–2 (0·90%).


2020 ◽  
Author(s):  
Luca Da Ros ◽  
Maurizio Ventura ◽  
Mirco Rodeghiero ◽  
Damiano Gianelle ◽  
Giustino Tonon

&lt;p&gt;&lt;strong&gt;Abstract.&lt;/strong&gt; Forests ability to store carbon is strongly connected with the amount of nitrogen (N) that forest ecosystems can retain; N is indeed considered the most limiting nutrient for terrestrial ecosystem's net primary productivity. Since the industrial revolution, human activities have more than doubled the rate of N input into the nitrogen cycle and this could alleviate N limitation thus stimulating plant growth. However, it has been suggested that when N availability exceeds biotic demand and abiotic sinks, additional N can trigger a negative cascade effect: nutrient imbalance, reduced productivity, increased losses of N, eutrophication and acidification of soil and water, leading toward forest decline and net greenhouse gases emissions. The consequences of increased N deposition on forest depend in large share on the fate of N in the ecosystem, which can be simulated and quantified by a fertilization at a known isotopic signature. Nevertheless, most of the tracer experiments performed so far added the fertilizer directly to the forest floor, neglecting the potential role of N uptake by the forest canopy. In the Italian Alps, we are conducting an experiment where both types of N additions (above and below the canopy layer) are performed in two different forest stands, to understand if canopy fertilization better simulates ecological consequences of increased atmospheric N deposition. These field-scale manipulation experiments are willing to test two different hypotheses: i) the N uptake by trees in the above-canopy N addition experimental sites is higher than under-canopy N addition ii) forest growth rate varies with the type of treatment. To describe the fate of the applied N, stable isotope techniques have been adopted: the forest sites, fertilized with NH&lt;sub&gt;4&lt;/sub&gt;NO&lt;sub&gt;3&lt;/sub&gt; at a known isotopic signature, are sampled for all the ecosystem components (plant, soil and water) periodically to determine the total N content and its isotopic signature. The &amp;#948;&lt;sup&gt;15&lt;/sup&gt;N values permit to calculate the recovery of N-fertilizer in tree tissues, soil and leaching-water, allowing us to understand how N allocation varies under these two fertilization strategies and how this affects C sequestration potential. Results regarding the short-term effects over the first 6 years of data collection will be presented.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document