Inhibition of cell proliferation and arrest of cell cycle progression by blocking chloride channels in human laryngeal cancer cell line Hep-2

Neoplasma ◽  
2009 ◽  
Vol 56 (3) ◽  
pp. 224-229 ◽  
Author(s):  
W. Fu ◽  
L. Zhao ◽  
K. Wang ◽  
M. Dong
2000 ◽  
Vol 118 (4) ◽  
pp. A522
Author(s):  
Chikara Kusano ◽  
Sonshin Takao ◽  
Takashi Aikou ◽  
Hidezou Noma ◽  
Hiroyoshi Yoh ◽  
...  

1998 ◽  
Vol 18 (6) ◽  
pp. 3445-3454 ◽  
Author(s):  
Zhao-Jun Liu ◽  
Takahiro Ueda ◽  
Tadaaki Miyazaki ◽  
Nobuyuki Tanaka ◽  
Shinichiro Mine ◽  
...  

ABSTRACT Cyclin C, a putative G1 cyclin, was originally isolated through its ability to complement a Saccharomyces cerevisiae strain lacking the G1 cyclin geneCLN1-3. Unlike cyclins D1 and E, the other two G1 cyclins obtained by the same approach and subsequently shown to play important roles during the G1/S transition, there is thus far no evidence to support the hypothesis that cyclin C is indeed critical for the promotion of cell cycle progression. In BAF-B03 cells, an interleukin 3 (IL-3)-dependent murine pro-B-cell line, cyclin C gene mRNA was induced at the G1/S phase upon IL-3 stimulation and reached a maximal level in the S phase. Enforced expression of exogenous cyclin C in this cell line failed to alter its growth properties. In the present study, we examined whether cyclin C is capable of cooperating with the cytokine-responsive immediate-early gene products c-Myc and c-Fos in the promotion of cell proliferation. We found that cyclin C is able to cooperate functionally with c-Myc, but not c-Fos, to induce both BAF-B03 cell proliferation in a cytokine-independent fashion and the formation of cell clusters. Furthermore, cyclin C was primarily responsible for the induction of cdc2 gene expression. Our data define a novel role for cyclin C in the regulation of both the G1/S and G2/M phases of the cell cycle, and this effect appears to be independent of the activity of CDK8 in the control of transcription.


2020 ◽  
Author(s):  
Changbo Fu ◽  
Lei Nie ◽  
Tao Yin ◽  
Xuan Xu ◽  
weijun lu

Abstract Background: LncRNA EPIC1 is likely involved in human cancer by promoting cell cycle progression. Our study was carried out to investigate the involvement of EPIC1 in gallbladder cancer (GBC). Methods: Expression levels of EPIC1 in two types of tissues (GBC and paracancerous) and plasma were measured by performing qPCR. GBC-SD and SGC-996 cells were transfected with LET and EPIC1 expression vectors.Results: In the preset study we found that EPIC1 was upregulated in tumor tissues than in paracancerous tissues of GBC patients, and plasma levels of EPIC1 were significantly correlated with levels of EPIC1 in tumor tissues. LncRNA LET was downregulated in tumor tissues than in paracancerous tissues and was inversely correlated with EPIC1 in both tumor tissues and paracancerous tissues. Overexpression of EPIC1 led to downregulated LET, and LET overexpression also mediated the downregulation of EPIC1. EPIC1 led to accelerated GBC cell proliferation and inhibited apoptosis. Overexpression of LET played opposites roles. In addition, overexpression of LET also attenuated the effects of EPIC1 overexpression on cancer cell proliferation and apoptosis. Conclusion: Therefore, therefore, lncRNA EPIC1 may promote cancer cell proliferation and inhibit apoptosis in GBC by interacting with LET.


2013 ◽  
Vol 32 (6) ◽  
pp. 608-612
Author(s):  
Li-ming ZHAO ◽  
Guang-yuan SUN ◽  
Li-rong LOU ◽  
Liang-zhe WANG ◽  
Zheng FANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document