Novel pyrazoles as potent growth inhibitors of staphylococci, enterococci and Acinetobacter baumannii bacteria

Author(s):  
Ibrahim Alkhaibari ◽  
Hansa Raj KC ◽  
Duminduni H Angappulige ◽  
David Gilmore ◽  
Mohammad A Alam

Background: Methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and Acinetobacter baumannii cause serious antibiotic-resistant infections. Finding new antibiotics to treat these infections is imperative for combating this worldwide menace. Methods & Results: In this study, the authors designed and synthesized potent antimicrobial agents using 4-trifluoromethylphenyl-substituted pyrazole derivatives. In addition to their potency against planktonic bacteria, potent compounds effectively eradicated S. aureus and Enterococcus faecalis biofilms. Human cells tolerated these compounds with good selectivity factors. Furthermore, the authors provide evidence for the mode of action of compounds based on time-kill kinetics, flow cytometry analysis of propidium iodide-treated bacteria and oxygen uptake studies. Conclusion: This study demonstrated 20 novel compounds with potent antibacterial activity that are tolerated by human cell lines.

2019 ◽  
Vol 20 (6) ◽  
pp. 1255 ◽  
Author(s):  
Ana Monserrat-Martinez ◽  
Yann Gambin ◽  
Emma Sierecki

Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Abdulrazaq Tukur ◽  
Isaac Asusheyi Bello ◽  
Neil Anthony Koorbanally ◽  
James Dama Habila

Our search for new antibiotics led to the syntheses and biological evaluation of new classes of dicarboxylic acid analogues. The syntheses involve nucleophilic addition of different substituted benzylamine, aniline, alkylamine, and 4-hydroxyl-L-proline with carbamoylbenzoic acid. The results of the antimicrobial activity as indicated by the zone of inhibition (ZOI) showed that Z10 is the most active against Pseudomonas aeruginosa (32 mm) and least active against Candida stellatoidea (27 mm) and Vancomycin Resistant Enterococci (VRE) (27 mm), while Z7 shows the least zone of inhibition (22 mm) against Methicillin Resistant Staphylococcus aureus (MRSA). The minimum inhibition concentration (MIC) determination reveals that Z10 inhibits the growth of tested microbes at a low concentration of 6.25 μg/mL, while Z9 and Z12 inhibits the growth of most microbes at a concentration of 12.5 μg/mL, recording the least MIC. The Minimum Bactericidal/Fungicidal Concentration (MBC/MFC) results revealed that Z10 has the highest bactericidal/fungicidal effect on the test microbes, at a concentration of 12.5 μg/mL, with the exception of Candida stellatoidea and Vancomycin Resistant Enterococci (VRE) with MBC/MFC of 25 μg/mL. The result of this investigation reveals the potential of the target compounds (Z1–3,5,7–12) in the search for new antimicrobial agents.


2013 ◽  
Vol 57 (9) ◽  
pp. 4547-4550 ◽  
Author(s):  
Louis D. Saravolatz ◽  
Joan Pawlak ◽  
Stephanie N. Saravolatz ◽  
Leonard B. Johnson

ABSTRACTRetapamulin and six other antimicrobial agents were evaluated against 155 methicillin-resistantStaphylococcus aureus(MRSA) isolates, including strains resistant to vancomycin, linezolid, daptomycin, and mupirocin by microdilution tests. Time-kill assays were performed against representative MRSA, vancomycin-intermediateS. aureus(VISA), and vancomycin-resistantS. aureus(VRSA) isolates. Retapamulin and mupirocin demonstrated MIC90s of 0.12 μg/ml and 8 μg/ml, respectively, with resistance seen in 2.6% and 10% of isolates, respectively. Retapamulin maintained good activity against 94% (15/16) of mupirocin-resistant isolates.


2008 ◽  
Vol 52 (10) ◽  
pp. 3820-3822 ◽  
Author(s):  
Adam Belley ◽  
Eve Neesham-Grenon ◽  
Francis F. Arhin ◽  
Geoffrey A. McKay ◽  
Thomas R. Parr ◽  
...  

ABSTRACT Oritavancin is a semisynthetic lipoglycopeptide in clinical development for serious gram-positive infections. This study describes the synergistic activity of oritavancin in combination with gentamicin, linezolid, moxifloxacin, or rifampin in time-kill studies against methicillin-susceptible, vancomycin-intermediate, and vancomycin-resistant Staphylococcus aureus.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243082
Author(s):  
Uthaibhorn Singkham-in ◽  
Paul G. Higgins ◽  
Dhammika Leshan Wannigama ◽  
Parichart Hongsing ◽  
Tanittha Chatsuwan

The aim of this study was to determine the activity and synergistic mechanisms of resveratrol in combination with chlorhexidine against carbapenem-resistant Acinetobacter baumannii clinical isolates. The activity of resveratrol plus antimicrobial agents was determined by checkerboard and time-kill assay against carbapenem-resistant A. baumannii isolated from patients at the King Chulalongkorn Memorial Hospital, Bangkok, Thailand. Overexpression of efflux pumps that mediates chlorhexidine susceptibility was characterized by the ethidium bromide accumulation assay. The effect of resveratrol on the expression of efflux pump genes (adeB, adeJ, adeG abeS, and aceI) and the two-component regulators, adeR and adeS was determined by RT-qPCR. The combination of resveratrol and chlorhexidine resulted in strong synergistic and bactericidal activity against carbapenem-resistant A. baumannii. Up-regulation of adeB and aceI was induced by chlorhexidine. However, the addition of resveratrol increased chlorhexidine susceptibility with increased intracellular accumulation of ethidium bromide in A. baumannii indicating that resveratrol acts as an efflux pump inhibitor. Expression of adeB was significantly reduced in the combination of resveratrol with chlorhexidine indicating that resveratrol inhibits the AdeB efflux pump and restores chlorhexidine effect on A. baumannii. In conclusion, reduced adeB expression in A. baumannii was mediated by resveratrol suggesting that AdeB efflux pump inhibition contributes to the synergistic mechanism of resveratrol with chlorhexidine. Our finding highlights the potential importance of resveratrol in clinical applications.


2019 ◽  
Vol 7 (1) ◽  
pp. 9-15
Author(s):  
Hamid Beyzaei ◽  
Hadis Hosseini Moghadam ◽  
Ghodsieh Bagherzade ◽  
Reza Aryan ◽  
Mohammadreza Moghaddam-Manesh

Background: Design, identification, and synthesis of new antimicrobial agents along with preventive proceedings are essential to confront antibiotic-resistant pathogenic bacteria. Heterocyclic Schiff bases are biologically important compounds whose antimicrobial potentials have been proven to bacterial and fungal pathogens. Objectives: In this study, some quinoline Schiff bases were synthesized from condensation of 2-chloro3-quinolinecarboxaldehyde and aniline derivatives. Their inhibitory activities were evaluated against 6 gram-positive and 2 gram-negative bacterial pathogens. Methods: Disc diffusion, broth microdilution, and time-kill tests were applied according to the CLSI guidelines to determine IZD, MIC, and MBC values. Results: 2-Chloro-3-quinolinecarboxaldehyde Schiff bases could inhibit the growth of bacteria with IZDs of 7.5-19.8 mm, MICs of 256-2048 μg mL-1, and MBCs of 512 to ≥2048 μg mL-1. Conclusion: Moderate antibacterial effects were observed with heterocyclic Schiff bases. Complexation and structural changes can improve their antimicrobial properties.


1999 ◽  
Vol 43 (11) ◽  
pp. 2776-2779 ◽  
Author(s):  
S. O. Matsumura ◽  
L. Louie ◽  
M. Louie ◽  
A. E. Simor

ABSTRACT Using checkerboard and time-kill assays, we evaluated the in vitro activity of quinupristin-dalfopristin (RP 59500) alone and in combination with five other antimicrobial agents against 12 clinical strains of vancomycin-resistant Enterococcus faecium(VREF). In time-kill studies, six VREF strains exhibited synergism with the combination of quinupristin-dalfopristin and doxycycline and three exhibited synergism with quinupristin-dalfopristin plus ampicillin-sulbactam. Combinations of quinupristin-dalfopristin with these and other agents warrant further clinical evaluation for the treatment of serious VREF infections.


1996 ◽  
Vol 17 (4) ◽  
pp. 236-248 ◽  
Author(s):  
John P. Flaherty ◽  
Robert A. Weinstein

AbstractResistance to antimicrobial agents is an evolving process, driven by the selective pressure of heavy antibiotic use in individuals living in close proximity to others. The intensive care unit (ICU), crowded with debilitated patients who are receiving broad-spectrum antibiotics and being cared for by busy physicians, nurses, and technicians, serves as an ideal environment for the emergence of antibiotic resistance. Problem pathogens presently include multiply resistant gram-negative bacilli, methicillin-resistantStaphylococcus aureus, and the recently emerged vancomycin-resistant enterococci. The prevention of antimicrobial resistance in ICUs should focus on recognition via routine unit-based sur veillance, improved compliance with handwashing and barrier precautions, and antibiotic-use policies tailored to individual units within hospitals.


2013 ◽  
Vol 57 (5) ◽  
pp. 2103-2108 ◽  
Author(s):  
Jessica A. O'Hara ◽  
Lauretta A. Ambe ◽  
Leila G. Casella ◽  
Bethany M. Townsend ◽  
Mark R. Pelletier ◽  
...  

ABSTRACTTreatment of infections due to extensively drug-resistant (XDR)Acinetobacter baumanniioften involves the use of antimicrobial agents in combination. Various combinations of agents have been proposed, with colistin serving as the backbone in many of them. Recent data suggest that glycopeptides, in particular vancomycin, may have unique activity against laboratory-adapted and clinical strains ofA. baumannii, alone and in combination with colistin. The aim of the present study was to test this approach against three unique colistin-resistantA. baumanniiclinical strains using combinations of vancomycin (VAN), colistin (COL), and doripenem (DOR). All three strains possessed the signature phosphoethanolamine modification of the lipid A moiety associated with colistin resistance and unique amino acid changes in the PmrAB two-component signal transduction system not observed in colistin-susceptible strains. In checkerboard assays, synergy (defined as a fractional inhibitory concentration index [FICI] of ≤0.5) was observed between COL and VAN for all three strains tested and between COL and DOR in two strains. In time-kill assays, the combinations of COL-DOR, COL-VAN, and COL-DOR-VAN resulted in complete killing of colistin-resistantA. baumanniiin 1, 2, and all 3 strains, respectively. In theGalleria mellonellamoth model of infection, the combinations of DOR-VAN and COL-DOR-VAN led to significantly increased survival of the larvae, compared with other combinations and monotherapy. These findings suggest that regimens containing vancomycin may confer therapeutic benefit for infection due to colistin-resistantA. baumannii.


Sign in / Sign up

Export Citation Format

Share Document