scholarly journals Residual Body Remains in Older of Two Daughter Cells

2005 ◽  
Vol 4 (12) ◽  
pp. 1306-1306
Keyword(s):  
1961 ◽  
Vol s3-102 (58) ◽  
pp. 273-292
Author(s):  
BHUPINDER N. SUD

The chromatoid body was discovered by von Brunn (1876) in the cytoplasm of the young spermatid in the white rat. It was first described in a marsupial by KorfT (1902), in a vertebrate other than mammals by the Schreiners (1905, 1908), and in an invertebrate by Bösenberg (1905). The word chromatoide was first used in connexion with spermatogenesis by Benda (1891), who called this cytoplasmic inclusion der chromatoide Nebenkörper. The German authors generally call it der chromatoide Körper, the French authors corps chromatoïde. Wilson (1913) referred to it as the chromatoid body and it is generally given this name in papers written in English, though the expression ‘chromatic body’ is sometimes used. It is suggested that the ‘residual body’ described by Gresson and Zlotnik (1945) is identical with the chromatoid body of other authors. In most species the chromatoid body is spherical or ovoid but in some it assumes other forms as well and in a few it is never spherical or ovoid. The chromatoid body is usually single in each cell, but sometimes there are 2 or 3 and in a few there are many. In living cell the chromatoid body generally gives a low phase-change, and is invisible or almost invisible when studied by direct microscopy. In the Mammalia, however, it gives a higher phase-change. The chromatoid body is highly resistant to acetic acid. It is deeply stained by basic dyes and basic dye-lakes. It is also stained intensely by acid dyes. The chromatoid body cannot in most cases be blackened by silver or long osmication techniques. The histochemical reactions show that the chromatoid body consists mainly of RNA and basic proteins rich in arginine. There is little or no tyrosine. Lipid, carbohydrates, DNA, alkaline phosphatase, and calcium are not shown by histochemical techniques. As a rule the chromatoid body is homogeneous but in some cases it has a cortex and a medulla. In many cases it is surrounded by a clear, vacuole-like space. Under the electron microscope it has been seen as an opaque irregular body, as an irregular mass of closely aggregated, dense, osmiophil granules, or as a faintly electron-opaque body. The chromatoid body has so far been recorded in certain species of mammals, a bird, reptiles, cyclostomes, Crustacea, insects, and arachnids. In most cases it appears for the first time during the growth of the primary spermatocyte. Its presence in the spermatid has been recorded in practically all cases. With a few exceptions it has not been found to take any obvious part in the final make-up of the spermatozoon. The chromatoid body in most cases seems to disappear at the metaphases of meiosis and to be later reconstructed in the daughter cells. The chromatoid body probably originates from the ground cytoplasm. On the basis of histochemical studies it is tentatively suggested that the function of the chromatoid body may be to provide basic proteins for the final maturation of the chromatin in the nucleus of late spermatids. Certain authors have considered that a cytoplasmic inclusion occurring in the young (and in some cases mature) spermatozooids of certain liverworts, mosses, and a gymnosperm is to be regarded as the homologue of the chromatoid body. Reasons are given for denying this supposed homology.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Periz ◽  
Mario Del Rosario ◽  
Alexandra McStea ◽  
Simon Gras ◽  
Colin Loney ◽  
...  

Abstract The obligate intracellular parasite Toxoplasma gondii replicates in an unusual process, described as internal budding. Multiple dausghter parasites are formed sequentially within a single mother cell, requiring replication and distribution of essential organelles such as micronemes. These organelles are thought to be formed de novo in the developing daughter cells. Using dual labelling of a microneme protein MIC2 and super-resolution microscopy, we show that micronemes are recycled from the mother to the forming daughter parasites using a highly dynamic F-actin network. While this recycling pathway is F-actin dependent, de novo synthesis of micronemes appears to be F-actin independent. The F-actin network connects individual parasites, supports long, multidirectional vesicular transport, and regulates transport, density and localisation of micronemal vesicles. The residual body acts as a storage and sorting station for these organelles. Our data describe an F-actin dependent mechanism in apicomplexans for transport and recycling of maternal organelles during intracellular development.


2021 ◽  
Author(s):  
William S O'Shaughnessy ◽  
Xiaoyu Hu ◽  
Sarah Ana Henriquez ◽  
Michael L Reese

Accurate cellular replication balances the biogenesis and turnover of complex structures. Apicomplexan parasites such as Plasmodium and Toxoplasma replicate by forming daughter cells within an intact mother cell, creating additional challenges to ensuring fidelity of division. Critical to these parasites' infectivity is an intricate cytoskeleton structure called the apical complex. Before the daughter apical complex can be inserted into the plasma membrane, the maternal material must be turned over. We previously identified the kinase ERK7 as required for the maturation of the apical complex in Toxoplasma gondii. Here we define the Toxoplasma ERK7 interactome, and identify a putative E3 ligase, CSAR1, as the downstream effector responsible for the phenotype. Genetic disruption of CSAR1 fully suppresses loss of the apical complex upon ERK7 knockdown. Furthermore, we show that CSAR1 is normally responsible for turnover of maternal cytoskeleton during cytokinesis, and that its aberrant function is driven by a mislocalization from the parasite residual body to the maternal and daughter apical complexes. These data identify a protein homeostasis pathway critical for Toxoplasma replication and fitness and suggest an unappreciated role for the parasite residual body in compartmentalizing processes that threaten the fidelity of parasite development.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
Awtar Krishan ◽  
Nestor Bohonos

Cytochalasin B, a mould metabolite from Helminthosporium dermatioideum has been shown to interfere with specific cell activities such as cytoplasmic cleavage and cell movement. Cells undergoing nuclear division in the presence of cytochalasin B are unable to complete the separation of the resulting daughter cells. In time-lapse studies, the daughter cells coalesce after an initial unsuccessful attempt at separation and form large multinucleate polyploid cells. The present report describes the fine structure of the large polyploid cells induced in Earle's L-cell monolayer cultures by exposure to cytochalasin B (lγ/ml) for 92 hours.In the present material we have seen as many as 7 nuclei in these polyploid cells. Treatment with cytochalasin B for longer periods of time (6 to 7 days, with one medium change on the 3rd day) did not increase the number of nuclei beyond the 7 nuclei stage. Figure 1 shows a large polyploid cell with four nuclei. These nuclei are indistinguishable in their fine structure from those of the cells from control cultures but often show unusually large numbers of cytoplasmic invaginations and extensions of the nuclear surface (Figure 2).


2009 ◽  
Vol 184 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jen-Hsuan Wei ◽  
Joachim Seemann

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


2021 ◽  
Vol 22 (9) ◽  
pp. 4959
Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1160
Author(s):  
Atul Pradhan ◽  
Nagaraja Mukkayyan ◽  
Kishor Jakkala ◽  
Parthasarathi Ajitkumar

Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister–daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.


Sign in / Sign up

Export Citation Format

Share Document