scholarly journals pRB and E2F4 play distinct cell-intrinsic roles in fetal erythropoiesis

Cell Cycle ◽  
2010 ◽  
Vol 9 (2) ◽  
pp. 371-376 ◽  
Author(s):  
Jing Zhang ◽  
Eunice Y. Lee ◽  
Yangang Liu ◽  
Seth D. Berman ◽  
Harvey F. Lodish ◽  
...  
Author(s):  
Brendan Clifford

An ultrastructural investigation of the Malpighian tubules of the fourth instar larva of Culex pipiens was undertaken as part of a continuing study of the fine structure of transport epithelia.Each of the five Malpighian tubules was found to be morphologically identical and regionally undifferentiated. Two distinct cell types, the primary and stellate, were found intermingled along the length of each tubule. The ultrastructure of the stellate cell was previously described in the Malpighian tubule of the blowfly, Calliphora erythrocephala by Berridge and Oschman.The basal plasma membrane of the primary cell is extremely irregular, giving rise to a complex interconnecting network of basal channels. The compartments of cytoplasm entrapped within this system of basal infoldings contain mitochondria, free ribosomes, and small amounts of rough endoplasmic reticulum. The mitochondria are distinctive in that the cristae run parallel to the long axis of the organelle.


Blood ◽  
1978 ◽  
Vol 51 (3) ◽  
pp. 539-547 ◽  
Author(s):  
DH Chui ◽  
SK Liao ◽  
K Walker

Abstract Erythroid progenitor cells in +/+ and Sl/Sld fetal livers manifested as burst-forming units-erythroid (BFU-E) and colony-forming units- erythroid (CFU-E) were assayed in vitro during early development. The proportion of BFU-E was higher as mutant than in normal fetal livers. On the other hand, the proportion of CFU-E was less in the mutant than in the normal. These results suggest that the defect in Sl/Sld fetal hepatic erythropoiesis is expressed at the steps of differentiation that effect the transition from BFU-E to CFU-E.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 355
Author(s):  
Guilhem Lalle ◽  
Julie Twardowski ◽  
Yenkel Grinberg-Bleyer

The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.


Blood ◽  
2013 ◽  
Vol 122 (6) ◽  
pp. 988-998 ◽  
Author(s):  
Yehudit Birger ◽  
Liat Goldberg ◽  
Timothy M. Chlon ◽  
Benjamin Goldenson ◽  
Inna Muler ◽  
...  

Key Points Transient expansion of fetal megaerythroid progenitors in ERG/Gata1s mouse is biologically similar to Down syndrome TMD. The N-terminal domain of GATA1 and the downregulation of ERG expression are essential for normal fetal erythropoiesis.


2021 ◽  
Vol 22 (7) ◽  
pp. 3649
Author(s):  
Patricia Ramos-Ramírez ◽  
Omar Tliba

Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and “directly” regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chantriolnt-Andreas Kapourani ◽  
Ricard Argelaguet ◽  
Guido Sanguinetti ◽  
Catalina A. Vallejos

AbstractHigh-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression. scMET is available at https://github.com/andreaskapou/scMET.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bagrat Grigoryan ◽  
Daniel W. Sazer ◽  
Amanda Avila ◽  
Jacob L. Albritton ◽  
Aparna Padhye ◽  
...  

AbstractAs a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure–function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-β1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.


Sign in / Sign up

Export Citation Format

Share Document