scholarly journals Effects of Elastane Draw Ratio of Core-spun Yarn on Air Permeability and Bursting Strength of Bi-Stretch Woven Fabrics

Author(s):  
Kaynak HK
2018 ◽  
Vol 18 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Zamir Ahmed Abro ◽  
Nanliang Chen ◽  
Zhang Yifan ◽  
Hong Cheng-Yu ◽  
Abdul Malik Rehan Abassi ◽  
...  

Abstract In this research work, thermal properties of plain woven fabrics generated from regenerated bamboo and cotton fiber blended yarns were investigated. Seven mixtures of fiber (100% bamboo, 100% cotton, 10:90 bamboo: cotton, 20:80 bamboo: cotton, 30:70 bamboo: cotton, 40:60 bamboo: cotton and 50:50 bamboo: cotton) were developed to create 60 Tex ring spun yarn. The warp yarns were used as 100% regenerated bamboo and the bamboo: cotton blends were used alternatively in weft to produce plain woven fabrics. The plain structured woven fabrics show eminent thermal comfort properties with the blending of regenerated bamboo fibers. The air permeability of 100% regenerated bamboo fiber was recorded higher than the compared blends; the increased key factor contents of bamboo changed the air properties of the fabric. Furthermore, plain woven fabric of bamboo/cotton (50/50) has shown greater thermal conductivity and heat retention properties. The work reported in this paper is ensuring highpoints of thermal comfort properties of regenerated bamboo (100%) and cotton (100%) with plain woven structured fabrics, and potentially, the fabrics can be used for winter suiting apparel products.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pelin Gürkan Ünal ◽  
Gonca Özçelik Kayseri ◽  
H. Diren Mecit

Abstract Seat upholstery fabrics for vehicles are crucial products as technical textiles in motor vehicles make up approximately 15% of the total manufactured technical textiles worldwide and more than 50% of the production belongs to the woven fabrics because of their appropriate properties for this application. The current work presents the comfort-related properties of the woven fabrics designed to be used in automotive seat upholstery. For this aim, double-layered woven fabrics were produced with four different process variables such as bottom layer pattern, number of interlacing warps in a unit report, number of interlacing picks per top warp, and number of weft skips by using Taguchi experimental design. Besides handle related properties, such as circular bending rigidity, surface roughness properties, and thermo physiological comfort related properties that include air permeability, thermal resistance, and moisture management properties were measured and analyzed based on Taguchi experimental analysis.


Author(s):  
Sunny Pannu ◽  
Meenakshi Ahirwar ◽  
Rishi Jamdigni ◽  
B. K. Behera

The woven fabrics containing cotton/spandex core spun yarns possesses very vital properties of stretch, recovery and thus shape retention from the view point of wearing comfort and garment appearance. Spandex present in the core of core spun yarn is the most essential performer behind these properties. An attempt is made in this research work to study the influence of changing spandex denier in core spun yarn on the stretch and functional properties of stretch woven fabrics. The sole objective of this study is to find out whether different stretch, shrinkage and physical properties of stretch woven fabrics depend upon changing spandex percentage achieved by means of change in spandex filament denier. It was observed that by increasing denier of spandex in core spun weft yarns the increase in weft shrinkage diminishes. Dual core weft with spandex provides good elongation percentage and recovery percentage. The fabric with higher denier spandex in yarn shows a decreasing total hand values trend for summer and winter. The results depicts that the fabrics have higher THV for winter suiting fabrics as compared to summer suiting thus are more suitable for the winter wear.


2017 ◽  
Vol 12 (1) ◽  
pp. 155892501701200
Author(s):  
Züleyha Değirmenci ◽  
Ebru Çoruh

This paper reports the effect of loop length and raw material on the air permeability and the bursting strength of plain knitted fabrics. In this study, a series of plain knitted fabrics were produced on a circular knitting machine with cotton, polyester, acrylic and viscose by Ne 30/1 yarns. Each fabric type was produced with four different stitch lengths. All the fabrics were knitted at the same machine setting in order to determine the effect of their structure on the fabric properties. Their geometrical and physical properties were experimentally investigated. The influences of the loop length and the raw material on the number of the courses per cm, number of the wales per cm, loop shape factor, thickness, fabric unit weight, tightness factor, air permeability and bursting strength are analyzed. Statistical analysis indicates that raw material and loop length significantly parameters affect the air permeability and the bursting strength properties of the fabrics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Tayyab Noman ◽  
Michal Petru ◽  
Nesrine Amor ◽  
Petr Louda

AbstractThis study investigates physicochemical impact of ultrasonic irradiations on surface topography of woven fabrics. In a simultaneous in-situ sonochemical method, the synthesis and coating of zinc oxide nanoparticles (ZnO NPs) on woven textiles were successfully achieved. Different instruments i.e. Alambeta, moisture management tester, air permeability tester and permetester were utilised during experimentation for thermal evaluation, moisture transportation and air permeation. The results regarding thermophysiological comfort of ZnO coated fabrics were evaluated on the basis of thickness and ZnO NPs coated amount on fabrics. In addition, the achieved results depict the impact of sonication (pressure gradient) on surface roughness of cotton and polyester. The coating of ZnO NPs on fabrics, crystal phase identification, surface topography and fluctuations in surface roughness were estimated by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray Diffractometry (XRD), ultrahigh-resolution scanning electron microscopy (UHR-SEM) and energy dispersive X-ray (EDX). Moreover, thermophysiological properties i.e. thermal conductivity, absolute evaporative resistance, thermal absorptivity, air permeability, overall moisture management capacity and relative water vapour permeability of untreated and ZnO treated samples were evaluated by standard test methods.


2016 ◽  
Vol 16 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Hüseyin Kadoğlu ◽  
Krste Dimitrovski ◽  
Arzu Marmaralı ◽  
Pınar Çelik ◽  
Güldemet Başal Bayraktar ◽  
...  

Abstract Owing to growing demand for comfortable clothes, elastane filament yarns are being used in fabrics for several garments. In this study, core spun yarns were produced with cotton fibres and PBT/elastane filament yarns (cotton as sheath material, PBT yarn and elastane as core yarns). Twill woven (1/3 Z) fabrics were produced by using core spun yarns (30 tex) and cotton yarns (30 tex) as weft, and 100% cotton yarn (59 tex) as warp yarns. The fabrics consisting of PBT were washed at 100°C for 30 minutes to gain the elasticity. The woven fabrics’ weight, thickness, elongation, permanent elongation, dimensional stability, air permeability, thermal conductivity, thermal absorptivity characteristics were tested and statistically evaluated. According to the results, the fabrics containing PBT and elastane filaments had similar elongation and shrinkage values. PBT filament yarns have a great potential to produce lightweight elastic fabrics.


2020 ◽  
pp. 152808372094773
Author(s):  
Eren Oner ◽  
Ahmet Cagdas Seckin ◽  
Huseyin Coskun ◽  
Dilara Evsever Kole

The aim of this study was to determine the thermophysiological comfort behavior of fabrics based on copper wire that can be used for electro-textile applications. For this purpose, hybrid folding yarns were produced by twisting cotton/polyester yarn with copper wire. These electrically conductive hybrid yarns were then used to produce upholstery fabrics with different weave types as plain, 2/1 twill and sateen weave in three different density levels as tight, medium and loose. Thermophysiological comfort properties such as air permeability, thermal and water vapor properties of the hybrid fabrics were measured. In addition, the heat transfer properties of the fabrics were investigated with thermal camera videos, and porosity values were determined from microscope images. In this way, the main thermophysiological comfort properties of the basic electro-textile structures were revealed. According to the results obtained, it was found that the use of conductive wire in the fabric structure did not negatively affect the thermophysiological comfort properties of the fabrics, and fabric density was a determining parameter in relation to the thermophysiological comfort properties of the fabrics. The obtained results of this study may be used to improve the design of electro-textile structures taking into account the thermophysiological comfort.


2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900 ◽  
Author(s):  
Marie Havlová

In this paper we demonstrate the possibility of using the close relationship between structure and air permeability of a woven fabric for the detection of the non-uniformity (or defects) in the structure of the fabric. Air permeability of fabrics is a principal property of the structure of a textile material. A very small change in the structure of the fabric at a given location causes a change in the permeability at that location. First we measure the air permeability at defined locations of the fabric. The method allows us to detect areas with an extreme value of permeability – the locations “suspected” of extreme unevenness of fabric's structure. Second, we explore the structure of the fabric in these areas of extreme values of the permeability and attempt to determine the causes of the irregularities in the fabric's structure. To quantify and describe the degree of these irregularities we applied methods of image analysis and statistical processing on acquired data. For our experiment, woven fabrics in the plain weave made from 100% staple yarn polyester were used. Results of our research confirm that significantly greater permeability variations occur in the weft direction of the fabric. Subsequent analysis of the structure of the fabric shows the bimodal nature or the data corresponding to the measurement of width of inter-yarn pore in the place of the maximal value of permeability. The observed higher value of permeability can be attributed to the irregularity of warp yarns at a given location of fabric. Initial permeability measurements enabled us to detect locations of its extreme values. Further close examination of these “suspected” locations of the fabric by a detailed analysis of the structure lead to the determination of the causes of the related irregularities.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650003 ◽  
Author(s):  
HAFEEZULLAH MEMON ◽  
SOHAIL YASIN ◽  
NAZAKAT ALI KHOSO ◽  
SAMIULAH MEMON

The multifunctional textiles are interesting areas to be researched on. In this paper, the effect of the fiber nanocoating on the wrinkle recovery, air permeability and anti-Ultraviolet (UV) property of different woven fabrics using sol–gel method has been studied. The sol–gel method has various advantages over other methods. Along with these properties, no change in visual appearance has also been discussed in this paper. The dispersion of nanoparticles of titanium was obtained into silica sol. The characterization of nanocoating was done using Field emission scanning electron micrograph (FESEM) and Fourier transform infrared spectroscopy (FTIR) studies. The fabric wrinkle recovery properties, air permeability and anti-UV performance were analyzed using three different immersion timings into the nanosol. The results revealed that both wrinkle recovery properties and anti-UV performance have increased with respect to immersing time of the nanocoating although a slight decrease in air permeability and whiteness index of the fabric was also observed.


Sign in / Sign up

Export Citation Format

Share Document