scholarly journals Investigation of the Characteristics of Elasticised Woven Fabric by Using PBT Filament Yarns

2016 ◽  
Vol 16 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Hüseyin Kadoğlu ◽  
Krste Dimitrovski ◽  
Arzu Marmaralı ◽  
Pınar Çelik ◽  
Güldemet Başal Bayraktar ◽  
...  

Abstract Owing to growing demand for comfortable clothes, elastane filament yarns are being used in fabrics for several garments. In this study, core spun yarns were produced with cotton fibres and PBT/elastane filament yarns (cotton as sheath material, PBT yarn and elastane as core yarns). Twill woven (1/3 Z) fabrics were produced by using core spun yarns (30 tex) and cotton yarns (30 tex) as weft, and 100% cotton yarn (59 tex) as warp yarns. The fabrics consisting of PBT were washed at 100°C for 30 minutes to gain the elasticity. The woven fabrics’ weight, thickness, elongation, permanent elongation, dimensional stability, air permeability, thermal conductivity, thermal absorptivity characteristics were tested and statistically evaluated. According to the results, the fabrics containing PBT and elastane filaments had similar elongation and shrinkage values. PBT filament yarns have a great potential to produce lightweight elastic fabrics.

2018 ◽  
Vol 69 (03) ◽  
pp. 177-182
Author(s):  
ZAHRA QURBAT ◽  
MANGAT ASIF ELAHI ◽  
FRAZ AHMAD ◽  
HUSSAIN SAJID ◽  
ABBAS MUDASSAR ◽  
...  

Air and moisture transport properties of plain woven fabric made from 20sNec cotton in warp and 20sNec pure yarns of tencel, modal, pro-modal, bamboo, polyester and cotton yarn inweft direction are studied. Major characteristics added for this study include water vapour permeability, air permeability, wettingtime and wicking speed. In comparison of six different samples of variously composed materials in weft direction, the air permeability of tencel was minimum and polyester was maximum, whereas the reverse results were observed for both the samples in case of water vapour permeability. Among the blends with cotton, thermal conductivity of bamboo and thermal absorptivity of polyester was found maximum whereas the minimum thermal resistance was observed for pro modal yarn in weft. Similar pattern was observed in spreading speed and wetting time of the polyester when observed from either side top or bottom. Air and moisture comfort properties of bamboo and pro modal, having nearly similar values are suggested to be used in garments used for golf players


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dessalegn Awgichew ◽  
S. Sakthivel ◽  
Eshetu Solomon ◽  
Addisalem Bayu ◽  
Robel Legese ◽  
...  

The uses of recycled materials have gained massive importance in the textile sector and other application areas as the effects of reducing natural resources are felt worldwide. This study aimed to analyze the effects of recycled fiber usage on the properties of OE-rotor spun yarns and hand-woven fabrics produced from these yarns. For this purpose, OE-rotor yarns are produced at different proportion levels from virgin cotton and recycled fibers derived from knitted garment wastes at 25%, 50%, and 75%, respectively. For a better assessment, properties of OE-rotor yarns that contain recycled fibers and 100% virgin cotton OE-rotor yarns are compared. Physical, structural, and mechanical properties such as unevenness, imperfections, hairiness, breaking force, and elongation are analyzed by Uster Tester 5 SX, Uster Zweigle Hairiness Tester 5, and Uster Tensorapid 3. Plain and twill hand-woven fabrics are produced from OE-rotor spun yarns. Effects of recycled fiber proportion on hand-woven fabric properties such as pilling, abrasion resistance, and air permeability were also evaluated. Results showed that the use of up to 75% of recycled fiber cotton blended yarns shows no statistically significant differences in yarn and fabric properties.


2014 ◽  
Vol 49 (1) ◽  
pp. 25-30
Author(s):  
S Sultana ◽  
MZ Haque ◽  
HP Nur

Sizing of the cotton yarn is essential to reduce breakage of the yarn due to abrasion during weaving process. The sizing agent on the woven fabric after weaving needs to remove completely before the next textile production process of dyeing and finishing. So, water soluble sizing agent is easy to handle and easy to desizing for pre-treatment of woven fabric. In this work, different types of water soluble tamarind seed kernel based sizing formulations (assigned by A, B and C) were made and applied on cotton yarn to investigate the effect on the tensile properties of sized and unsized cotton yarns. Cotton yarn treated with size B formulation shows the better tensile properties than the application of size A and size C formulation. The effect of lubricant has also been investigated and shows that the addition of lubricant decreases the tensile properties of the cotton yarn. DOI: http://dx.doi.org/10.3329/bjsir.v49i1.18850 Bangladesh J. Sci. Ind. Res. 49(1), 25-30, 2014


Author(s):  
Sunny Pannu ◽  
Meenakshi Ahirwar ◽  
Rishi Jamdigni ◽  
B. K. Behera

The woven fabrics containing cotton/spandex core spun yarns possesses very vital properties of stretch, recovery and thus shape retention from the view point of wearing comfort and garment appearance. Spandex present in the core of core spun yarn is the most essential performer behind these properties. An attempt is made in this research work to study the influence of changing spandex denier in core spun yarn on the stretch and functional properties of stretch woven fabrics. The sole objective of this study is to find out whether different stretch, shrinkage and physical properties of stretch woven fabrics depend upon changing spandex percentage achieved by means of change in spandex filament denier. It was observed that by increasing denier of spandex in core spun weft yarns the increase in weft shrinkage diminishes. Dual core weft with spandex provides good elongation percentage and recovery percentage. The fabric with higher denier spandex in yarn shows a decreasing total hand values trend for summer and winter. The results depicts that the fabrics have higher THV for winter suiting fabrics as compared to summer suiting thus are more suitable for the winter wear.


2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900 ◽  
Author(s):  
Marie Havlová

In this paper we demonstrate the possibility of using the close relationship between structure and air permeability of a woven fabric for the detection of the non-uniformity (or defects) in the structure of the fabric. Air permeability of fabrics is a principal property of the structure of a textile material. A very small change in the structure of the fabric at a given location causes a change in the permeability at that location. First we measure the air permeability at defined locations of the fabric. The method allows us to detect areas with an extreme value of permeability – the locations “suspected” of extreme unevenness of fabric's structure. Second, we explore the structure of the fabric in these areas of extreme values of the permeability and attempt to determine the causes of the irregularities in the fabric's structure. To quantify and describe the degree of these irregularities we applied methods of image analysis and statistical processing on acquired data. For our experiment, woven fabrics in the plain weave made from 100% staple yarn polyester were used. Results of our research confirm that significantly greater permeability variations occur in the weft direction of the fabric. Subsequent analysis of the structure of the fabric shows the bimodal nature or the data corresponding to the measurement of width of inter-yarn pore in the place of the maximal value of permeability. The observed higher value of permeability can be attributed to the irregularity of warp yarns at a given location of fabric. Initial permeability measurements enabled us to detect locations of its extreme values. Further close examination of these “suspected” locations of the fabric by a detailed analysis of the structure lead to the determination of the causes of the related irregularities.


2012 ◽  
Vol 627 ◽  
pp. 147-155 ◽  
Author(s):  
Li Min Shi ◽  
Xiao Li ◽  
Yue Ping Wang ◽  
Qiu Yu Li

The materials structures from the regenerated bamboo fiber (namely bamboo pulp fiber), the functional polyester fiber (UV-resistance polyester) and the profiled polyester were analyzed. 28 pieces of fabrics through blending, mixing and matching were designed and woven. The properties including thermal-wet comfort (such as air permeability, moisture permeability and water absorbance etc.) and other functions (such as UV-resistance and anti-bacteria) on those fabrics were tested, discussed and analyzed. The result is that when the radio of the functional polyester reach 45~50 %, the radio of regenerated bamboo fiber in 50 %, the structure is 3/1 or 2/1 twill weave,the double-layer-like tightness woven fabrics avoiding finished and bad hand feel will perform cool , UV-resistance, anti-bacteria multi-function. It will be a good choice to use these fabrics in summer shirts. It will give some references to the development of summer new functional products.


2014 ◽  
Vol 910 ◽  
pp. 210-213 ◽  
Author(s):  
Jia Horng Lin ◽  
Ting An Lin ◽  
An Pang Chen ◽  
Ching Wen Lou

The electronic appliance is capable of emitting electromagnetic waves that will cause the damage of electrical equipment and influence peoples health. In this study, stain steel filament (SS filament) and 75D PET filament were used to manufacture SS/PET composite yarn The SS/PET composite yarn were made by the wrapping machine, which the core yarn is stain steel filament, wrapped yarn is 75D PET filament and the wrapping layers is varied as one and two. After that, the composite yarn is fabricated by the automatic sampling loom into composite woven fabrics. The composite SS/PET woven fabrics were under the tests of electromagnetic shielding effectiveness (EMSE) and air permeability. The test results revealed that the EMSE of the one-layer composite woven fabric is 9.5 dB at 900 MHz, but the EMSE decreases as test frequency increases. When laminating layer added to three layers, the EMSE raise up to 12.6 dB. The EMSE of composite woven fabric reached at 29.9 when the laminated angle is 45°. And the air permeability decreases as the laminate layer increases, which the thickness of sample affect air to pass through the sample.


2020 ◽  
Vol 71 (04) ◽  
pp. 302-308
Author(s):  
MINE AKGUN ◽  
GIZEM KARAKAN GUNAYDIN ◽  
AYÇA GÜRARDA ◽  
ERHAN KENAN ÇEVEN

Turkish traditional Buldan weavings are known as special fabrics in terms of providing comfortable clothes which are known to be natural and healthy in Denizli, Turkey. The research presented in this paper assesses the effects of different fabric structural parameters of Buldan fabrics on comfort properties such as thermal resistance, thermal absorptivity, water vapour permeability and air permeability. Five different Buldan fabrics woven with different fabric structural parameters were produced. According to test results, cotton/Tencel Buldan fabrics indicated similar comfort properties with the 100% cotton Buldan fabric properties. Additionally, the lowest thermal absorptivity was observed from 100% cotton Buldan fabrics which give the warmth feeling among the evaluated samples.


2021 ◽  
Vol 8 (1) ◽  
pp. 52-66
Author(s):  
Dessalegn Awgichew ◽  
Santhanam Sakthivel ◽  
Mekdes Gedlu ◽  
Meseret Bogale

Products produced from textile industries cannot meet the needs for human kind since the population of the world grows exponentially; due to this the recycling of textile materials has gained massive importance in textile and clothing sector. In this study, it was aimed to analyse recycled fibers effect on the yarn and hand loom fabrics as their proportion increases. For this purpose, OE rotor yarns produced by varying the recycled fibers proportion at 25%, 50, and 75% and compared with 100% virgin cotton yarns. The physical and mechanical properties of the yarns such as unevenness, imperfections, hairiness, breaking force, elongation, were measured by Uster Tester 4 SX, Uster Zweigle Hairiness Tester 5, and Uster Tensorapid 3. Then after hand loom fabrics with plain and twill fabrics are produced from produced yarns of different recycled fiber proportions. The effects of recycled fiber proportion on produced hand-woven fabric properties such as pilling, abrasion resistance and air permeability were also evaluated. Results showed that yarns and fabrics produced from recycled fibers blended with virgin cotton are suitable for applications where the strength of yarns and fabric are less critical, but where unevenness, imperfections and handle properties required thus, hand loom fabrics Produced can suitably used for home furnishing applications like table cover, curtains, wall covers and pillow cases.


2020 ◽  
pp. 004051752094254
Author(s):  
Maher Alsayed ◽  
Halil İbrahim Çelik ◽  
Hatice Kübra Kaynak

The number of filaments in yarn cross-section, weave density, and weave type are considered the most important factors that affect the property of air permeability of multifilament woven fabrics. Microfilament yarns significantly affect the air permeability property of this type of fabric because of the low porosity between the filaments. This study deals with the development of a fuzzy logic model for predicting the air permeability of multifilament polyester woven fabrics produced from conventional and microfilament yarns. The polyester multifilament yarns used in this study were produced with three different microfilament fineness and two conventional filament fineness levels. The woven fabric samples used in this study were obtained in three weave types: plain, twill, and satin, and with five different weave densities. In accordance with the experimental test results, both regression analysis and fuzzy logic system were built. The air permeability results generated from the developed fuzzy model and the regression equations were compared with the experimental values. Satisfactory and accurate prediction results were obtained with the developed fuzzy logic model. The mean absolute error of the fuzzy model and regression analysis were found to be 2.32%, 12.59%, respectively. Therefore, it was confirmed that the fuzzy model was superior in predicting air permeability.


Sign in / Sign up

Export Citation Format

Share Document