scholarly journals Melt Infiltration Casting of Alumina Silicon Carbide and Boron Carbide Reinforced Aluminum Matrix Composites

Author(s):  
Ali Kalkanli ◽  
Tayfun Durmaz ◽  
Ayse Kalemtas ◽  
Gursoy Arslan
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ridvan Gecu ◽  
Ahmet Karaaslan

This study aims to investigate the effect of volume fraction of commercially pure titanium (CP-Ti) on microstructural, mechanical, and tribological features of A356 aluminum matrix composites. Vacuum-assisted melt infiltration casting was performed to produce composites with 50%, 65%, 75%, and 80% CP-Ti contents. CP-Ti sawdusts were assembled under mechanical pressure in order to attain porous one-piece CP-Ti preforms which were infiltrated by A356 melt at 730 °C under 10−5 Pa vacuum atmosphere. TiAl3 layer was formed at the interface between A356 and CP-Ti phases. Owing to increased diffusion time through decreased diffusion path length, both thickness and hardness of TiAl3 phase were increased with increasing CP-Ti ratio, whereas the best wear resistance was obtained at 65% CP-Ti ratio. The main reason for decrease in wear resistance of 75% and 80% CP-Ti reinforced composites was fragmentation of TiAl3 layer during wear process due to its excessively increased brittleness. Strongly bonded TiAl3 phase at the interface provided better wear resistance, while weakly bonded ones caused to multiply wear rate.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia E. Ares ◽  
Carlos E. Schvezov

The present work is focused on the study of the effect of directional heat extraction on the silicon-carbide (SiC) distribution in zinc-aluminum matrix composites (MMCs) and on the columnar-to-equiaxed (CET) position in directionally solidified samples. To this end, a ZA-27 alloy matrix was reinforced with ceramic particles of SiC and vertically directionally solidified. The cooling rates, temperature gradients, and interphase velocities were then measured, and their influence on the solidification microstructure of the MMCs was analyzed. The recalescence detected and measured during the equiaxed transition was of the order of 3.5°C to 1.1°C. The values of the temperature gradients reached a minimum during the CET and were even negative in most cases (between −3.89 K and 0.06 K). The interphase velocities varied between 0.07 mm/s and 0.44 mm/s at the transition. Also, the presence of ceramic particles in ZA-27 alloys affected the thermodynamic local conditions and the kinetics of nucleation, producing a finer microstructure.


2014 ◽  
Vol 1017 ◽  
pp. 98-103
Author(s):  
Fei Hu Zhang ◽  
Kai Wang ◽  
Peng Qiang Fu ◽  
Meng Nan Wu

With silicon particles reinforced aluminum matrix composites with high volume fraction becoming a new hotspot on research and application in the aerospace materials and electronic packaging materials, the machinability of this material needs to be explored. This paper reports research results obtained from the surface grinding experiment of silicon particles reinforced aluminum matrix composites using black silicon carbide wheel, green silicon carbide wheel, white fused alumina wheel and chromium alumina wheel. The issues discussed are grinding force, surface roughness, the comparison of different grinding wheels, the micro-morphology of the work piece. The results showed that the grinding force was related with the grinding depth and the grinding wheel material, the grinding force was increasing as the grinding depth growing. The surface roughness was between 0.29μm and 0.48μm using the silicon carbide wheel. The surface of the work piece had concaves caused by silicon particles shedding and grooves caused by the grains observed by the SEM and CLSM.


2011 ◽  
Vol 492 ◽  
pp. 138-141 ◽  
Author(s):  
Yu Hong Chen ◽  
Jian Jun Ma ◽  
Wen Jie Guo ◽  
Liang Jiang ◽  
Peng Yuan Yang

Aluminum matrix composites reinforced by silicon carbide particles (SiCp/Al) were prepared using microwave sintering. The hardness, bending strength and compression strength of sintered composites had been measured. The results showed that SiCp/Al composite can be sintered by microwave in very short time. The oxidation or plating copper in silicon carbide surface can improve the mechanical properties of composites.


Sign in / Sign up

Export Citation Format

Share Document