scholarly journals The Effect of Air Pollution on some Biochemical Parameters of Leaves of Three Tree Species Growing in the Industrial Area in Jeddah, Saudi Arabia

Author(s):  
Shaheen Shaheen

The effect of industrial emissions on the levels of certain biochemical measurements in leaves of Camphor (Cinnamomum camphora), Henna (Lawsonia inermis), and Bougainvillea (Bougainvillea spectabilis) trees growing in the industrial zone in Jeddah - Saudi Arabia and Hada Al-Shame area (control) was done. Overall results showed that the content of chlorophyll a and b, total chlorophyll, carotenoids and protein in the plant leaf of the trees growing in the industrial zone were less comparing with the leaves of the trees growing in the control area.

Author(s):  
Al-Toukhy Al-Toukhy

Effect of air pollution in the industrial area of Jeddah city, Saudi Arabia on three tree species Camphor (Cinnamomum camphora), Henna (Lawsonia inermis), and Bougainvillea (Bougainvillea spectabilis) has been studied with special reference to characteristics of leaves. These plant species were chosen because they are common and in the industrial and control areas. leaf area, number of stomata, stomata length and width and stomata pore width and length of these plant species were investigated. The results of this study with all trees species showed significant decrease in plant leaf area and stomata number in the industrial zone comparing with the control area. The results of those tree species indicated marked alteration in epidermal traits, with increased stomata length and width and stomata pore width and length collected from industrial site than those from control site. These changes in the leaf area and epidermal traits could be as indicator of environmental stress and can be recommended in the industrial areas for the early detection of air pollution.


Author(s):  
Al-Toukhy s Al-Toukhy s

Particles matters accumulation and anatomical leaf properties of Camphor (Cinnamomum camphora), Henna (Lawsonia inermis), and Bougainvillea (Bougainvillea spectabilis) trees growing in the industrial zone in Jeddah - Saudi Arabia and Hada Al-Shame area (control) was done. The leaf properties of all tree species growing in the industrial and control showed that each stoma had a raised edge over the guard cell region. The guard cells appeared more shrunken on the polluted leaves as compared with unpolluted leave. The results indicated that the most deposition particles on leaf surfaces of all tree species were: soot (C) and soil dust with characteristic matrix elements (Si, Al, Mg, Ca, K); fuel oil particles rich in Al, Si, Ca, and Pb; coal ash particles containing C, Al, Si, K, Ca, S; and Pb. As a result, leaves of those plant species may be used as bio-indicators for the assessment of particular matters in the industrial areas.


Author(s):  
Nor Ashikin Sopian ◽  
Juliana Jalaludin ◽  
Suhaili Abu Bakar ◽  
Titi Rahmawati Hamedon ◽  
Mohd Talib Latif

This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography–mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m−3 and from 5.93 to 35.06 ng m−3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10−6 and 2.95 × 10−7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.


Author(s):  
Ali Y. Kahal ◽  
Kamal Abdelrahman ◽  
Hussain J. Alfaifi ◽  
Saleh Qaysi ◽  
Ahmed Nasser Aldossari
Keyword(s):  

2012 ◽  
Vol 12 (8) ◽  
pp. 19529-19570 ◽  
Author(s):  
M. D. Andrés-Hernández ◽  
D. Kartal ◽  
J. N. Growley ◽  
V. Sinha ◽  
E. Regelin ◽  
...  

Abstract. Peroxy radicals were measured by a PeRCA (Peroxy Radical Chemical Amplifier) instrument in the boundary layer during the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) campaign at a coastal, forested site influenced by urban-industrial emissions in Southern Spain in late autumn. Total peroxy radicals (RO2* = HO2 + ΣRO2) generally showed a daylight maximum between 10 and 50 pptv at 13:00 UTC, with an average of 18 pptv over the 15 days of measurements. Emissions from the industrial area of Huelva often impacted the measurement site at night during the campaign. The processing of significant levels of anthropogenic organics leads to an intense nocturnal radical chemistry accompanied by formation of organic peroxy radicals at comparable levels to those of summer photochemical conditions with peak events up to 60–80 pptv. The RO2 production initiated by reactions of NO3 with organic trace gases was estimated to be significant but not sufficient to account for the concentrations of RO2* observed in air masses carrying high pollutant loading. The nocturnal production of peroxy radicals seems therefore to be dominated by ozonolysis of volatile organic compounds. RO2* diurnal variations were consistent with other HO2 measurements available at the site. HO2/RO2* ratios generally varied between 0.3 and 0.4 in all wind directions. Occasional HO2/RO2* ≥ 1 seemed to be associated with periods of high RO2* variability and with RO2 interferences in the HO2 measurement in air masses with high RO2 load.


2021 ◽  
Vol 52 (6) ◽  
pp. 1326-1333
Author(s):  
V. Abozaid ◽  
H. Arif Abdulrahman ◽  
D. Ayoub Ibrahim

This study was performed to investigate the impact of air pollution on leaf area and anatomical features of Melia azedarach L. trees, in urban areas with three demographical classes: location (I) industrial area, location (II) roadside area and free parts (control area) as a location (III) of Duhok city/Kurdistan Region-Iraq, during July 2021. The results demonstrated that the leaf area of selected plants' leaves in location I had reduced with no noticeable change in the average stomata density in the three locations I, II and Ⅲ. Meanwhile, the results of the most anatomical features of the blade (blade, lower cuticle, epidermis (both upper and lower) thickness, palisade layer height and spongy parenchyma width) in addition to midrib parameters (epidermis thickness (upper and lower), collenchyma and parenchyma layer width, phloem and xylem width and pith diameter) were decreased in both locations I, II, and with well-developed anatomical features in location III.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 908 ◽  
Author(s):  
Hosam O. Elansary ◽  
Agnieszka Szopa ◽  
Paweł Kubica ◽  
Halina Ekiert ◽  
Fahed A. Al-Mana ◽  
...  

Acacia saligna and Lawsonia inermis natural populations growing in Northern Saudi Arabia might be a valuable source of polyphenols with potent biological activities. Using high-performance liquid chromatography–diode array detection (HPLC-DAD), several polyphenols were detected tentatively in considerable amounts in the methanolic leaf extracts of A. saligna and L. inermis. A. saligna mainly contained rutoside, hyperoside, quercetin 3-glucuronide, gallic acid and p-coumaric acid, whereas those of L. inermis contained apigenin 5-glucoside, apigetrin and gallic acid. Strong antioxidant activities were found in the leaf extracts of both species due to the presence of hyperoside, quercetin 3-glucuronide, gallic acid, isoquercetin, p-coumaric acid, quercitrin and rutoside. A. saligna and L. inermis leaf extracts as well as hyperoside, apigenin 5-glucoside, and quercetin 3-glucuronide significantly reduced reactive oxygen species accumulation in all investigated cancer cells compared to the control. Methanolic leaf extracts and identified polyphenols showed antiproliferative and cytotoxic activities against cancer cells, which may be attributed to necrotic cell accumulation during apoptotic periods. Antibacterial activities were also found in both species leaf extracts and were twice as high in A. saligna than L. inermis due to the high composition of rutoside and other polyphenols. Finally, strong antifungal activities were detected, which were associated with specific phenols such as rutoside, hyperoside, apigenin 5-glucoside and p-coumaric acid. This is the first study exploring the polyphenolic composition of A. saligna and L. inermis natural populations in northern Saudi Arabia and aiming at the detection of their biological activities.


2018 ◽  
Vol 18 (6) ◽  
pp. 3969-3985 ◽  
Author(s):  
Qijing Bian ◽  
Badr Alharbi ◽  
Mohammed M. Shareef ◽  
Tahir Husain ◽  
Mohammad J. Pasha ◽  
...  

Abstract. Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia, is limited but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September 2012 at various sites in the city and used a thermo-optical semi-continuous method to quantify the organic carbon (OC) and elemental carbon (EC) concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 µg m−3, respectively, during this period. Both OC and EC concentrations had strong diurnal variations, with peaks at 06:00–08:00 LT and 20:00–22:00 LT, attributed to the combined effect of increased vehicle emissions during rush hour and the shallow boundary layer in the early morning and at night. This finding suggested a significant influence of local vehicular emissions on OC and EC. The OC ∕ EC ratio in primary emissions was estimated to be 1.01, close to documented values for diesel emissions. Estimated primary organic carbon (POC) and secondary organic carbon (SOC) concentrations were comparable, with average concentrations of 2.0 ± 2.4 and 2.8 ± 3.4 µg m−3, respectively. We also collected 24 h samples of PM10 onto quartz microfiber filters and analyzed these for an array of metals by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Total OC was correlated with Ca (R2 of 0.63), suggesting that OC precursors and Ca may have similar sources, and the possibility that they underwent similar atmospheric processing. In addition to a ubiquitous dust source, Ca is emitted during desalting processes in the numerous refineries in the region and from cement kilns, suggesting these sources may also contribute to observed OC concentrations in Riyadh. Concentration weighted trajectory (CWT) analysis showed that high OC and EC concentrations were associated with air masses arriving from the Persian Gulf and the region around Baghdad, locations with high densities of oil fields and refineries as well as a large Saudi Arabian cement plant. We further applied positive matrix factorization to the aligned dataset of EC, OC, and metal concentrations (Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and V). Three factors were derived and were proposed to be associated with oil combustion, industrial emissions (Pb based), and a combined source from oil fields, cement production, and local vehicular emissions. The dominant OC and EC source was the combined source, contributing 3.9 µg m−3 (80 %) to observed OC and 1.9 µg m−3 (92 %) to observed EC.


Sign in / Sign up

Export Citation Format

Share Document