Development of an Equivalent Numerical Model of a Bolted Point based on an Analytical Solution

Author(s):  
O. Omran ◽  
V.-D. Nguyen ◽  
H. Jaffal ◽  
P. Marchand ◽  
A. Bezza ◽  
...  
1988 ◽  
Vol 1 (21) ◽  
pp. 141
Author(s):  
Todd L. Walton ◽  
Philip L.F. Liu ◽  
Edward B. Hands

This paper examines the effects of random and deterministic cycling of wave direction on the updrift beach planform adjacent to a jetty. Results provided using a simplified numerical model cast in dimensionless form indicate the importance of the time series of wave direction in determining design jetty length for a given net sediment transport. Continuous cycling of • wave direction leads to the expected analytical solution. Simplications in the numerical model used restrict the applications to small wave angles, no diffraction, no reflection of waves off structure, no refraction, and no sand bypassing at jetty. The concept can be extended to more sophisticated numerical models.


2003 ◽  
Vol 474 ◽  
pp. 339-354 ◽  
Author(s):  
LILLIAN J. ZAREMBA ◽  
G. A. LAWRENCE ◽  
R. PIETERS

A numerical model is developed to study the effects of friction on the steady exchange flow that evolves when a barrier is removed from a constriction separating two reservoirs of slightly different densities. The model has excellent agreement with an analytical solution and laboratory measurements of exchange flows through channels of constant width and depth. The model reveals three viscous flow regimes for a convergent–divergent contraction of constant depth, and three additional viscous flow regimes when an offset sill is introduced. Each regime is characterized by a different set of internal hydraulic control locations. Examination of the predicted interface profiles reveals that it is not possible to distinguish between different flow regimes on the basis of these profiles alone.


2004 ◽  
Vol 127 (9) ◽  
pp. 1071-1073 ◽  
Author(s):  
Gregory F. Nellis ◽  
John M. Pfotenhauer

This paper presents the analytical solution for the effectiveness of a counterflow heat exchanger subjected to a uniformly distributed, external heat flux. The solution is verified against conventional ε-NTU relations in the limit of zero external heat flux. This situation is of interest in applications such as cryogenic and process engineering, and the analytical solution provides a convenient method for treating differential elements of a heat exchanger in a numerical model.


Author(s):  
Anand Desai ◽  
James Geer ◽  
Bahgat Sammakia

This paper presents the results of an experimental study of steady state heat conduction in a three dimensional stack package. The temperatures are measured at different interfaces within the stacked package. Delphi devices are used in the experiment which enables controlled power input and surface temperature of the devices. The experiment is carried out for three different boundary conditions on the package. The power input in varied to study its effects. A numerical model is created to compare to the experimental results. The results are also compared with the analytical solution presented in Desai et al [5] and Geer et al [6]. The results indicate that the experimental, numerical and analytical solutions follow the same trend. The agreement between the experimental and numerical results improves when the lateral losses are taken into account.


Author(s):  
N.T. Ovchinnikov ◽  
F.D. Sorokin

In two parts of the work, numerical and physical modeling of the deformation of the bar in the channel under axial compression is carried out. The regularities of nonlinear bending of the bar in the plane are revealed. Bar shapes are determined by the load history and can differ at the same force value. The solution is to find the shape with the lowest potential energy. The first part of the work describes the numerical model of the bar and the results of its application. The shapes of the bar bending under gradual loading are obtained, the studies coinciding with V.I. Feodosev’s analytical solution. Further research shows that the solution to the problem has a more complex ramified structure with various additional shapes. Deformation of the bar under gradual loading occurs in the form of a sequential variant appearance of bending waves in the bar under forces determined by the degree of non-uniformity of the lengths of potentially unstable sections and forming a range of shape instability. In variant transitions from one initial shape with a loss of stability, it is possible to obtain various subsequent shapes that differ in the sequence of deformation of the sections with one number of half-waves, or the number of generated half-waves. When a straight bar is loaded in one step, an increase in the force leads to a sequential increase in the number of bending half-waves in the corresponding ranges of the existence of shapes. The results obtained can be applied to the analysis of the operation of such bar objects as drill, casing, tubing strings in the well and cased pipelines, pipelines in the well and tunnel.


2016 ◽  
Vol 17 (3) ◽  
pp. 825-834 ◽  
Author(s):  
Abbas Parsaie ◽  
Amir Hamzeh Haghiabi

Modeling pollution transmission in rivers is an important subject in environmental engineering studies. Numerical approaches to modeling pollution transmission in rivers are useful tools for managing the water quality. The advection-dispersion equation is the governing equation in the transport of pollution in rivers. Recently, due to advances in fractional calculus in engineering modeling, the simulation of pollution transmission in rivers has been improved using the fractional derivative approach. In this study, by solving the fractional advection-dispersion equation (FRADE), a numerical model was developed for the simulation of pollution transmission in rivers with stagnant zones. To this purpose, both terms of the FRADE equation (advection and fractional dispersion) were discretized separately and the results were connected using a time-splitting technique. The analytical solution of a modified advection-dispersion equation (MADE) model and observed data from the Severn River in the UK were used to demonstrate the model capabilities. Results indicated that there is a good agreement between observed data, the analytical solution of the MADE model, and the results of the developed numerical model. The developed numerical model can accurately simulate the long-tailed dispersion processes in a natural river.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
A. Kaufmann ◽  
T. Lindner-Silwester ◽  
T. Antretter

The wear of dynamic sealing elements, i.e., elements that seal against a moving counter-surface, is highly complex. In dry-running reciprocating compressors, these sealing elements, commonly referred to as packing rings, have to seal the compressed gas against the environment along the reciprocating rod. Since the packing rings' seal effect arises from the differential pressure to be sealed, it is of paramount importance to take into account the gas pressure drop across the dynamic sealing surface. This paper presents a numerical model that allows us to calculate how the wear of such a packing ring evolves with time. An analytical solution is used to verify the numerical model.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Mohammad Ali Goudarzi

Liquid-roof interaction imposes a complicated distribution of out-of-plane deformation on the single-deck type floating roof (SDRF), which is the main source of considerable seismic stresses in floating roof. In this paper, an analytical solution for evaluating the dynamic interaction between the liquid and the floating roof is developed. Main physical and geometrical parameters are involved by the proposed analytical solution (PAS) for evaluating the seismic stresses of a single deck floating roof tanks (SDFR). The results of PAS are compared with the results of existing empirical formulas for various dimensions of SDRF tanks. In order to assess the validity of PAS for various sloshing wave height, a numerical model based on finite element method is established and the PAS results are compared with the finite element method (FEM) analysis results. The PAS predictions are in very good agreement with both the available empirical formula and the numerical model results.


2019 ◽  
Vol 24 (4) ◽  
pp. 230-240
Author(s):  
P. Frankovský ◽  
I. Delyová ◽  
M. Trebuňová ◽  
P. Čarák ◽  
M. Kicko ◽  
...  

Abstract This paper is aimed at a dynamic analysis of a hydraulically lifted ladder by means of analytical and numerical calculations. The solutions used in the dynamic analysis of mechanical systems were used in the analytical solution. A numerical model was created to verify the achieved results of the solved mechanical system with simulation of its motion.


2013 ◽  
Vol 397-400 ◽  
pp. 266-269
Author(s):  
Yan Dong Wang ◽  
Hong Guang Jia

Laval nozzle is the commonly used device in rocket engine and aero engine. this paper, the numerical model is derived. The convergent section subsonic flow and divergent section hypersonic flow are simulated in dimensionless method. Reverting the dimension, the result can be seen that the analytical solution, the CFX simulation solution and the numerical are in uniform.


Sign in / Sign up

Export Citation Format

Share Document