Accuracy and Reliability of Structural Analysis and Steel Design Software

Author(s):  
K.B. Rojiani ◽  
M.W. White ◽  
S.M. Hemler
Author(s):  
Nicolas Rox

A well-founded determination of steel structure scantlings is essential during the early design process of a ship or an ocean structure. In the first 4 up to 6 weeks of a new building project, the major part of the final building costs has to be fixed. Amongst others a proper steel weight estimation is crucial. The weight depends on the structural dimensions which are determined mostly by experience and rarely by direct calculations. Therefore, a simple direct strength calculation tool has been integrated in a ship design software. The tool uses structural and general ship design information. Besides the structural constraints, posed by the project design, the steel designer has to fulfill also the structural constraints posed by the classification societies. Normally they are checked with software solutions provided by the societies. However these software tools are not well adapted to the early design process as various design parameters change frequently. For this purpose a link has been created between a rule scantling tool on one side and a design software on the other. The link allows an automated exchange of steel scantlings and project information. By this the modeling and design work as well as the structure scantling and steel weight determination is performed in the design software tool, while the rule scantling tool is only used for a quick assessment of class conformity. With the help of the mentioned methods, the structure can be pre-dimensioned directly based on the early design model in accordance with the classification rules. Furthermore the steel dimensions can not only be optimized with regard to local and global loads, but also with regard to design boundary conditions. In consequence the early steel design process is improved by a more accurate steel scantlings determination and results in a better optimized steel structure as well as severely reduced time spent on the steel iterations.


1987 ◽  
Vol 14 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Glenn A. Morris ◽  
Jeffrey A. Packer

The importance of beam-to-column connections in determining the load–deformation behaviour of steel building frames has been recognized for more than 70 years. Yet steel design specifications, including Canadian Standard Association standard CAN3-S16.1-M84, still mandate that connections be treated as either "pinned" or "rigid," and prescribe approximate design assumptions accordingly. Structural analysis procedures and tools exist that can account adequately for connection behaviour. What is not complete is the knowledge of the force–deformation behaviour of the various connection types.In this paper, what is known of the force–deformation behaviour of the commonly used connection types is described. The factors influencing that behaviour are outlined. Procedures for modelling connection behaviour and for incorporating it into structural analysis computer programs are described. The effects of connections on the behaviour of the overall structure are described and illustrated with examples. Finally, the areas where additional research is needed are discussed. Key words: connections, steel, structural analysis, columns, semirigid design.


Author(s):  
P. Vlasák ◽  
B. Čerbák

<p><strong>Abstract.</strong> Presentation consists of three parts, which are interconnected:</p><ol><li>BIM application for plants treatment and other complicated structures in the field of water management</li><li>Statics of water management structures in the BIM environment</li><li>Application of Common Data Environment (CDE) for water management</li></ol><p>Two areas – statics and water management technology – are crucial for water management structures. Speaking of statics, we mean the statics of reinforced concrete structures. In our company AQUA PROCON s.r.o. we deal with this area comprehensively, ie. from the initial design in the BIM architectural and construction software, through transferring a load-bearing model to BIM software for 3D reinforcement modelling to evaluating model in static design software. All communication is held in Common Data Environment (CDE). Within this environment, a three-way communication is carried out by the designer, contractor and contracting authority. Part of our performance is also above-standard support for reinforced concrete contractors. We provide models of reinforced concrete structures in LOD 400. The use of Common Data Environment (CDE) does not concern only statics, but also the work of all other professions and project participants. Our activities and workflows are based on the philosophy of OPENBIM and IFC.</p>


Author(s):  
Letsatsi M.T. ◽  
◽  
Agarwal . A ◽  
Pitso I ◽  
◽  
...  

The demand for customized products has increased to suite various needs which could be easily developed using 3D printing technology. Most of the products require optimization for weight minimization which could be done using topological optimization tool. Topology optimization offers conceptual design for lighter and stiffer structures and helps to reach to efficient and aesthetic designs in lesser time. Topological optimization has shown its effectiveness is in improving design of structures with the help of high configuration and fast computing processors. With the use of FEA, the topologically optimized design can be tested which enables to determine design feasibility for different loads and boundary conditions. The current research investigates the application of topological optimization tool in weight minimization of support bracket. The generic design of supporting bracket is developed in Creo design software and structural analysis is conducted using techniques of Finite Element Method. The topological optimization tool enabled to reduce nearly 32% mass without much increase in deformation and stresses. The increase in deformation was found to be 5.6% and is profound in the regions of cylindrical support structure.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Sign in / Sign up

Export Citation Format

Share Document