Multi-Criteria Optimization of Life-Cycle Maintenance Programs using Advanced Modeling and Computational Tools

Author(s):  
D.M. Frangopol ◽  
N.M. Okasha
Author(s):  
He Huang ◽  
Gaurav Ameta

Excessive energy consumption has become a worldwide issue in today's design and manufacturing industry. An energy estimation framework that could later be used to integrate with CAD/CAM systems is in demand. This research develops a novel pattern to estimate energy consumptions. The pattern involves a software energy estimation framework and various software energy computational tools. Using this pattern, energy can be calculated by an energy estimation framework which can be attached with diverse energy computational tools. These computational tools can be designed for any purpose to calculate energy consumptions during a product life-cycle and for various manufacturing processes. The framework involved in this pattern features to be domain independent and flexible so that it will be expandable for different manufacturing domains and customizable for users. Details for developing such pattern are presented. Interaction between the framework and its computational tools is also discussed. With help of this pattern, energy estimation framework and energy computational tools can interact smoothly, and the development of computational tools can be extended or expanded for any purpose. Knowledge engineers who exert to integrate knowledge into computer systems can interpret domain-specific knowledge and share their expertise to improve the framework. The framework also assists users who have little knowledge about energy computations to estimate energy consumptions during the design stage, leading to products with reduced energy.


Author(s):  
Alex France Messias Monteiro ◽  
Marcus Tullius Scotti ◽  
Luciana Scotti

HIV is a virus that affects more than 37 million people worldwide, where only 23.3 million were receiving retroviral treatment by 2018, according to the World Health Organization (WHO). Three important enzymatic targets in the life cycle of HIV are: reverse transcriptase, protease and integrase; disease progression causes a decrease in CD4 + T lymphocytes, makes the infected organism vulnerable to opportunistic diseases. Therefore, much research aims to inhibit these enzymes to try to fight AIDS. This research aims to verify the use of silico techniques for an inhibitory activity of a set of 2-aminothiophenic drugs against these three enzymes, based on rational drug planning, virtual screening, and molecular modeling. To this end, many computational tools were used to generate data that improve the expectation of potential activity of these compounds. After all analyses, it was concluded that 12 of the 180 compounds tested may have potential activity against HIV-1 with low toxicological effects.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


Author(s):  
Randolph W. Taylor ◽  
Henrie Treadwell

The plasma membrane of the Slime Mold, Physarum polycephalum, process unique morphological distinctions at different stages of the life cycle. Investigations of the plasma membrane of P. polycephalum, particularly, the arrangements of the intramembranous particles has provided useful information concerning possible changes occurring in higher organisms. In this report Freeze-fracture-etched techniques were used to investigate 3 hours post-fusion of the macroplasmodia stage of the P. polycephalum plasma membrane.Microplasmodia of Physarum polycephalum (M3C), axenically maintained, were collected in mid-expotential growth phase by centrifugation. Aliquots of microplasmodia were spread in 3 cm circles with a wide mouth pipette onto sterile filter paper which was supported on a wire screen contained in a petri dish. The cells were starved for 2 hrs at 24°C. After starvation, the cells were feed semidefined medium supplemented with hemin and incubated at 24°C. Three hours after incubation, samples were collected randomly from the petri plates, placed in plancettes and frozen with a propane-nitrogen jet freezer.


1994 ◽  
Vol 11 (1) ◽  
pp. 47-56
Author(s):  
Virginia C. Day ◽  
Zachary F. Lansdowne ◽  
Richard A Moynihan ◽  
John A. Vitkevich

1978 ◽  
Vol 23 (2) ◽  
pp. 85-86
Author(s):  
BERTRAM J. COHLER
Keyword(s):  

1978 ◽  
Vol 23 (9) ◽  
pp. 697-697
Author(s):  
ALVIN G. BURSTEIN

1983 ◽  
Vol 28 (8) ◽  
pp. 643-644
Author(s):  
Michael DeShane
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document