scholarly journals Investigation of the Effect of Rosmarinic Acid on Cyclophosphamide-Induced Gonadal Toxicity

2022 ◽  
Vol 12 (01) ◽  
pp. 1-8
Author(s):  
Fırat Şahin ◽  
Fırat Aşır ◽  
Ebru Gökalp Özkorkmaz ◽  
Süreyya Özdemir Başaran ◽  
Özge Kaplan ◽  
...  
Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
H Hajimehdipoor ◽  
M Shekarchi ◽  
S Saeidnia ◽  
A Gohari ◽  
Z Abedi

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
A Altintas ◽  
F Göger ◽  
HG Duymuş ◽  
N Kırımer ◽  
KHC Başer

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
M Fattahi ◽  
V Nazeri ◽  
F Sefidkon ◽  
Z Zamani ◽  
J Palazon ◽  
...  

Molbank ◽  
10.3390/m1205 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1205
Author(s):  
Mohamed Touaibia ◽  
Anne-Sylvie Fabiano-Tixier ◽  
Farid Chemat

Chloropinane and chloromenthene, synthesized from pinene and limonene, respectively, were compared with their non-halogenated analogs and n-hexane for their ability to solubilize natural products of interest such as β-carotenoids, vanillin, and rosmarinic acid. Chloropinane was six times more efficient than hexane for β-carotene solubilization. Chloromenthene was 15 times better than hexane. Vanillin was 20 times more soluble in chloropinane than in hexane. Chloropinane and chloromenthene were 3.5 and 2 times more efficient than hexane for rosmarinic acid solubilization. Obtained from pinene and limonene, two very abundant natural products, and even from their waste byproducts, chloropinane and chloromenthene can be an alternative to solvents from non-renewable resources.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1252
Author(s):  
Hideo Yoshida ◽  
Tatsuru Nishikawa ◽  
Shoko Hikosaka ◽  
Eiji Goto

In Japan, red perilla leaves are used in the food and coloring industries, as well as in crude medicine. Perilla leaves contain a high concentration of phytochemicals such as perillaldehyde (PA) and rosmarinic acid (RA). The effects of UV-B radiation intensity (0.05–0.2 W m−2, UV-BBE: 0.041–0.083 W m−2), duration (3 or 6 h), and irradiation method (continuous or intermittent) for artificial nocturnal lighting using UV-B fluorescent lamps were evaluated on growth, flowering, and leaf phytochemical concentration in greenhouse-grown perilla. Under continuous UV-B irradiation at 0.1 W m−2 for 3 or 6 h, leaf color changed from red to green and leaf fresh weight decreased, compared with the control treatment. No leaf color change was observed under the 3-h treatment with UV-B radiation at 0.05 W m−2, wherein leaf fresh weight was similar to that of the control. Furthermore, RA concentration under continuous UV-B irradiation at 0.05 W m−2 for 3 h increased two-fold compared to that under control treatment, while PA concentration was not affected by UV-B irradiation. Thus, our data showed that continuous UV-B irradiation at 0.05 W m−2 for 3 h could effectively produce RA-rich perilla leaves without reducing in phenotypic quality or productivity. However, a 6-h intermittent illumination inhibited flowering without altering phytochemical concentration.


Sign in / Sign up

Export Citation Format

Share Document