scholarly journals Three-Dimensional Velocity Distribution Measurement Using Ultrasonic Velocity Profiler with Developed Transducer

2022 ◽  
Vol 10 (01) ◽  
pp. 32-55
Author(s):  
Naruki Shoji ◽  
Hiroshige Kikura ◽  
Hideharu Takahashi ◽  
Wongsakorn Wongsaroj
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zheng Yuan ◽  
Jin Jiang ◽  
Jun Zang ◽  
Qihu Sheng ◽  
Ke Sun ◽  
...  

In the array design of the vertical axis wind turbines (VAWT), the wake effect of the upstream VAWT on the downstream VAWT needs to be considered. In order to simulate the velocity distribution of a VAWT wake rapidly, a new two-dimensional numerical method is proposed, which can make the array design easier and faster. In this new approach, the finite vortex method and vortex particle method are combined to simulate the generation and evolution of the vortex, respectively, the fast multipole method (FMM) is used to accelerate the calculation. Based on a characteristic of the VAWT wake, that is, the velocity distribution can be fitted into a power-law function, a new correction model is introduced to correct the three-dimensional effect of the VAWT wake. Finally, the simulation results can be approximated to the published experimental results in the first-order. As a new numerical method to simulate the complex VAWT wake, this paper proves the feasibility of the method and makes a preliminary validation. This method is not used to simulate the complex three-dimensional turbulent evolution but to simulate the velocity distribution quickly and relatively accurately, which meets the requirement for rapid simulation in the preliminary array design.


2000 ◽  
Author(s):  
H. J. Kang ◽  
B. Zheng ◽  
C. X. Lin ◽  
M. A. Ebadian

Abstract The velocity distributions inside a centrifugal separator with outside and inside diameters of 152.4 mm (6″) and 76.2 mm (3″), respectively, have been investigated experimentally and numerically to obtain optimum separation efficiency. Two 12.7 mm (1/2-inch) holes were drilled on the external surface of the separator to measure the velocity distribution in the separator. Two direction velocities (tangential direction along the cylinder surface and axial along the vertical direction) were measured to compare with the numerical simulation results. A 6060P Pitot probe was employed to obtain the velocity distribution. The dust samples (a mixture of steel particle and dust) from the dust collection box were analyzed using a Phillips XL30 Scanning Electron Microscope. FLUENT code is used as the numerical solver for this fully three-dimensional problem. The fluid flow in the separator is assumed to be steady and incompressible turbulent flow. The standard k–ε model was employed in this study. Non-uniform, unstructured grids are chosen to discretize the entire computation domain. Almost 100,000 cells are used to discretize the whole separator. The constant velocity profile is imposed on the inlet plane. The pressure boundary condition is adopted at outlet plane. Comparing the velocity distribution and separation efficiency from the experiment and the numerical modeling shows that the experimental results and the estimated data agree fairly well and with a deviation within ±10%.


Author(s):  
Yoshio Zama ◽  
Masaaki Kawahashi ◽  
Hiroyuki Hirahara

The present investigation describes an application of a novel technique of simultaneous measurement of droplet size and three-dimensional components of velocity in a high density spray with swirl. The spray has a complicated and three-dimensional structure caused by mixing with surrounding airflow entrained by high speed fuel jet issuing from a nozzle. The breakup process of fuel film to fine-droplet-cloud, the droplet size dispersion and the velocity distribution of droplets are important factors in practical application of fuel spray for combustors. The conventional technique can be applied to local measurement of droplet speed and size. Recent methods, based on optical and image processing techniques, provide measurement of the velocity and droplet size distribution in observation area or volume. Maeda et al. proposed an excellent measurement technique of the size and the velocity distribution of droplet in spray based on interferometric laser imaging in which the fringe pattern is generated at the out of focus plane by interference between 0th order and 1st order refractions of droplet illuminated by high power laser light sheet. And also, in this technique, the separation of overlapping droplets image has been successfully done by optical method. As a practical application, the size and velocity distributions of droplets in a high density spray without swirl have been measured by this technique. In general, the droplet motion in a spray field is highly three-dimensional. Especially, a spray generated by a swirl nozzle shows complicated droplet motion in the three-dimensional field. In order to analyze the configuration of a complicated spray field, three-dimensional velocity measurement of droplets must be required. In the present paper, a combined measurement technique of the size and three velocity components of droplets in three-dimensional spray field based on doublet imaging technique of droplets and stereoscopic PIV method has been developed. And its feasibility and applicability was confirmed by practical application to measurements of spray fields induced by a swirl jet nozzle using in gas turbine.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1127
Author(s):  
Junpeng Wang ◽  
Cuicui Xu ◽  
Gang Zhou ◽  
Yansong Zhang

In order to understand the characteristics of the spray field of a dust suppression nozzle and provide a reference for dust nozzle selection according to dust characteristics, a three-dimensional phase Doppler particle analyzer (PDPA) spray measurement system is used to analyze the droplet size and velocity characteristics in a spray field, particularly the joint particle size–velocity distribution. According to the results, after the ejection of the jet from the nozzle, the droplets initially maintained some velocity; however, the distribution of particles with different sizes was not uniform. As the spray distance increased, the droplet velocity decreased significantly, and the particle size distribution changed very little. As the distance increased further, the large droplets separated into smaller droplets, and their velocity decreased rapidly. The distributions of the particle size and velocity of the droplets then became stable. Based on the particle size-velocity distribution characteristics, the spray structure of pressure-swirl nozzles can be divided into five regions, i.e., the mixing, expansion, stabilization, decay, and rarefied regions. The expansion, stabilization, and decay regions are the effective dust fall areas. In addition, the droplet size in the stabilization region is the most uniform, indicating that this region is the best dust fall region. The conclusions can provide abundant calibration data for spray dust fall nozzles.


1976 ◽  
Vol 43 (2) ◽  
pp. 203-204 ◽  
Author(s):  
M. Emin Erdogan

An exact solution of the steady three-dimensional Navier-Stokes equations is obtained for the case of flow due to noncoaxially rotations of a porous disk and a fluid at infinity. It is shown that for uniform suction or uniform blowing at the disk an asymptotic profile exists for the velocity distribution.


Sign in / Sign up

Export Citation Format

Share Document