scholarly journals Evolution of CD4+CD25hi T cell subsets in Aspergillus-infected liver transplantation recipients reduces the incidence of transplantation rejection via upregulating the production of anti-inflammatory cytokines

2014 ◽  
Vol 13 (3) ◽  
pp. 4932-4939 ◽  
Author(s):  
T. Xing ◽  
L. Zhong ◽  
G. Qiu ◽  
L. Huang ◽  
Z. Peng
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2856-2856 ◽  
Author(s):  
Carsten U Niemann ◽  
Angelique Biancotto ◽  
Betty Y. Chang ◽  
Joseph J. Buggy ◽  
J. Philip McCoy ◽  
...  

Abstract Introduction Proliferation of chronic lymphocytic leukemia (CLL) cells is highly dependent on the microenvironment. B-cell receptor (BCR) signaling and interactions of the tumor cells with elements of the tissue microenvironment including T cells and macrophages appear to be of particular importance (Burger et al, Blood 2009; Herishanu at al, Blood 2011; Bagnara at al, Blood 2011). The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib is highly effective in blocking BCR signaling and leads to impressive clinical responses in CLL (Byrd et al, NEJM 2013). BTK is a member of the TEC kinase family that also includes TEC, IL2-inducible T cell kinase (ITK), and BMX/ETK. BTK is not expressed in T cells; however ITK, which is expressed in T cells, is directly inhibited by ibrutinib, and the drug reduces cytokine secretion from activated T cells without inducing apoptosis (Herman et al, Blood, 2011). Here, we sought to determine the in vivo effect of ibrutinib on T cells and cytokine levels in CLL patients treated with single agent ibrutinib. Methods The effect of ibrutinib on T-cell subsets, T-cell activation, and cytokine profiles was assessed in 10 CLL patients treated with 420mg ibrutinib daily in an ongoing phase II trial (NCT01500733). Matched samples of viably frozen peripheral blood mononuclear cells obtained from patients pre-treatment and after 6 months on ibrutinib were analyzed by flow cytometry. Cytokine levels pre-treatment and on days 1, 28, months 2, and 6 on ibrutinib were measured in the same patients using the Milliplex human cytokine assay. Results Consistent with inhibition of BCR signaling in CLL cells, CCL3 and CCL4 serum levels were rapidly and significantly decreased by ibrutinib as described previously (Ponader et al, Blood, 2012). In addition, serum levels of a number of inflammatory cytokines including IL6, IL8, IFNg, and TNFα were decreased by > 50% by day 28 of ibrutinib treatment and remained so by 6 months. This is of specific interest as “pseudoexhausted” T cells from CLL patients were recently shown to secrete high amounts of IFNg, and TNFα (Riches et al, Blood 2013). Thus, the decreased levels of inflammatory cytokines may reflect a reversal of T cell “pseduoexhaustion”. Furthermore, the immunosuppressive cytokine IL10, a Th1-type cytokine that is secreted by CLL cells and activated T cells, was also rapidly and significantly reduced. These in vivo data are consistent with previous in vitro data showing decreased secretion of IL6 and IL10 from T cells upon exposure to ibrutinib (Herman et al, Blood, 2011). Thus, ibrutinib appears to reduce cytokine and chemokine secretion from both CLL and T cells resulting in an overall decrease in inflammatory cytokines. While absolute T-cell numbers showed little change on treatment, we found that ibrutinib reduced the frequency of activated CD4+ T cells (Table). Furthermore, for 3 out of 4 patients, the percentage of Ki67 positive T cells in the peripheral blood decreased on ibrutinib therapy (mean decrease 63%). The frequency of the Th17 T-cell subset was also diminished. Consistently, a decrease in serum levels of IL17 was seen in the two patients having detectable IL17 levels pre-treatment. While changes in the cytokine pattern (decrease in IFNg and IL10) might suggest inhibition of a Th1-type response, there was no change in the ratio of Th1 to Th2 T-cell subsets by immunophenotyping. Conclusions We here demonstrate a decrease in the levels of inflammatory cytokines and in T-cell activation in CLL patients treated with ibrutinib. Whether this is a direct consequence of BTK inhibition in B-cells or, at least in part, results from inhibition of T-cell signaling remains to be determined. Nevertheless, our data indicate that ibrutinib significantly alters the composition of the tumor microenvironment in CLL, affecting soluble as well as cellular elements. These effects may be important for clinical response and the development of combination therapies and therefore deserve further study. Supported by the Intramural Research Program of NHLBI. We thank our patients for participating and acknowledge Pharmacyclics for providing study drug. Disclosures: Off Label Use: Ibrutinib in chronic lymphocytic leukemia. Chang:Pharmacyclics: Employment, Equity Ownership. Buggy:Pharmacyclics: Employment, Equity Ownership.


2013 ◽  
Vol 28 (4) ◽  
pp. 193-197 ◽  
Author(s):  
Gianni Biancofiore ◽  
Lucia Bindi ◽  
Mario Miccoli ◽  
Maria R. Metelli ◽  
Erica Panicucci ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Iorhen Ephraim Akase ◽  
Bolanle O. P. Musa ◽  
Reginald Onyedumarakwe Obiako ◽  
Abdurrahman Ahmad Elfulatiy ◽  
Abdullahi Asara Mohammed

HIV infection is a chronic infection that almost inevitably progresses to AIDS. The infection is characterized by the deterioration in the immune function leading to opportunistic infections and malignancies. Additionally, there is an associated immune dysfunction characterized by a persistent inflammatory state and unhealthy elaboration of both pro- and anti-inflammatory cytokines. The CD4+ T cell count has been used as a surrogate for the level of immune dysfunction that exists in patients with HIV infection. Eighty-eight (88) patients with HIV infection, forty-four (44) of whom were treatment naïve patients and forty-four (44) who were treatment-experienced patients, were recruited. The serum concentrations of cytokines IL-6 and IL-10 were carried out using R&D human Quantikine ELISA kits, while patients’ CD4+ T cell counts were evaluated using the Partec easy count kit. The serum IL-6 and IL-10 concentrations were significantly higher among the AR-naïve participants compared to the ART-experienced group. Additionally, the IL-6 and IL-10 concentrations were higher in patients with lower CD4+ T cell count compared to those with higher cell counts though this was not statistically significant. Also, both IL-6 and IL-10 concentrations were higher in patients with higher WHO clinical staging of disease, significantly so for IL-6.


2020 ◽  
Author(s):  
Seth Andrews ◽  
Ty Maughon ◽  
Ross Marklein ◽  
Steven Stice

AbstractAlthough considerable evidence exists supporting the use of mesenchymal stromal cells (MSCs) for treating immune diseases, successful clinical translation has been challenging and has led researchers to investigate cell-free alternatives. MSC-derived extracellular vesicles (MSC-EVs) have been shown to mediate a significant portion of the observed therapeutic effect, including immunosuppression. MSCs have been shown to respond to different aspects of the injury microenvironment such as inflammatory cytokines and hypoxia, although acidosis has not been investigated and different conditions have not been assessed in terms of their effects on MSC-EV function. This study investigated the effects of acidosis, hypoxia, and inflammatory cytokine priming on MSCs and MSC-EVs. We cultured MSCs in the presence of acidosis, hypoxia, or inflammatory cytokines (Interferon-gamma and Tumor Necrosis Factor-alpha) and compared the characteristics of their EVs as well as their uptake by and suppression of different T cell subsets. MSCs showed a greater effect on suppressing activated CD4+ and CD8+ T cells than MSC-EVs. However, MSC-EVs from MSCs primed with acidosis increased CD4+ and CD8+ regulatory T cell frequency in vitro. This functional response was reflected by MSC-EV uptake. MSC-EVs from acidosis-primed MSCs were taken up by CD4+ and CD8+ regulatory T cells at a significantly higher level than MSC-EVs from control, hypoxic, and inflammatory cytokine groups. These data suggest that a simple low-cost alteration in MSC culture conditions, acidosis, can generate extracelluar vesicles that have a desirable influence on anti inflammatory T cell subtypes.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 384 ◽  
Author(s):  
Hendrik Ungefroren

The transforming growth factor-β (TGF-β) family of secreted growth factors controls many aspects of cell and tissue physiology in multicellular eukaryotes. Dysregulation of its pathway contributes to a broad variety of pathologies, including fibrosis and cancer. TGF-β acts as a powerful tumor suppressor in epithelial cells but during later stages of tumor development cancer cells eventually respond to this cytokine with epithelial-mesenchymal transition (EMT), invasion, metastasis, and immunosuppression. This collection of articles covers some important aspects of TGF-β signaling in cancer. Two articles focus on the role of TGF-β in tumor immunity and pro- and anti-inflammatory signaling, with one analyzing its impact on T-cell biology and different T-cell subsets, while the other deals with modulation of anti-inflammatory signaling by TGF-β receptors through proinflammatory signaling by immune receptors and the role of mechanotransduction in TGF-β-dependent immunosuppression. Another set of four chapters highlights the fact that context-dependent responsiveness to TGF-β is largely controlled by inputs from negative regulators and cooperation with proinflammatory and proapoptotic pathways. This theme is extended to the regulation of Smad signaling by differential phosphorylation, eventually converting canonical Smad signaling to a mitogenic, fibrogenic and carcinogenic outcome. Last, it is discussed how another posttranslational modification, SUMOylation, can modify protein function and impact TGF-β-induced EMT, invasion and metastasis.


2021 ◽  
pp. 108366
Author(s):  
Vanessa Rocha Ribeiro ◽  
Mariana Romao-Veiga ◽  
Priscila Rezeck Nunes ◽  
Mariana Leticia Matias ◽  
Jose Carlos Peracoli ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3517-3517
Author(s):  
Rao Prabhala ◽  
Dheeraj Pelluru ◽  
Paola Neri ◽  
Mariateresa Fulciniti ◽  
James J. Driscoll ◽  
...  

Abstract Multiple myeloma (MM) is associated with significant immune dysfunction. Although various mechanisms mediating immune dysregulation in MM have been studied, its molecular and cellular basis is ill defined. IL-6, TGF-β and IL-1β have been implicated in this process, but their mechanism of effects on immune function have not been studied in MM. Together, IL-6 and TGF-β enhance the generation of TH17 cells, important in the development of immunity and auto-immunity. Additionally, TH17 cells are differentiated by number of inflammatory cytokines including, IL-21, IL-22, IL-23, and IL-27. Therefore, we evaluated the immune dysfunction and the role of TH17 cells and associated pro-inflammatory cytokines in myeloma. We have previously characterized that the production of TH1 mediated cytokines including IFN-γ following anti-CD3-mediated activation is significantly lower in myeloma PBMC compared to normal PBMC. We hypothesize that this may be regulated via skewing the immune system towards TH17 pathway. We observed that TH17 cells, measured by intra-cellular flow cytometry, are significantly increased in number in myeloma (16.9%) and MGUS (6.2%) compared to normal (3.3%). Furthermore, we analysed supporting pro-inflammatory cytokine network for the generation of TH17 cells in myeloma, which may be responsible for the observed TH17 skewing of T cell subsets. Sera from MGUS (n=12) and myeloma (n=17) patients were evaluated for the presence of these pro-inflammatory cytokines compared with normal sera (n=6) using ELISA. We observed significant increase in serum IL-21, IL-22 and IL-23 in MGUS (373 pg/ml, 14 pg/ml and 147 pg/ml respectively; p<0.05) and myeloma (296 pg/ml, 12 pg/ml and 215 pg/ml respectively; p<0.05) compared with normal (63 pg/ml, 1.5 pg/ml and 39 pg/ml respectively). In addition, we also observed that the myeloma PBMC stimulated in the presence of IL-6 and TGF-β, both of the cytokines present at a high level in myeloma, induced significant IL-23 production compared with normal. Importantly, IL-23 levels were 10 fold higher in myeloma BM samples compared with matching blood samples. These results indicate that the cytokines from myeloma BM microenvironment may be responsible for the observed T cell subset abnormality by favouring TH17 cells via IL-23/IL-21 production. These cytokines thus may be targets to modulate immune responses in myeloma to enhance immune function and devise effective vaccination strategies in the future.


Blood ◽  
2011 ◽  
Vol 117 (24) ◽  
pp. 6571-6581 ◽  
Author(s):  
Amorette Barber ◽  
Charles L. Sentman

Abstract Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8+ T cells. Stimulation of CD8+ T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin–induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin– and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8+ T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gwang-Muk Choi ◽  
Bombi Lee ◽  
Riwon Hong ◽  
Seon-Young Park ◽  
Da-Eun Cho ◽  
...  

AbstractThe mechanism underlying bee venom (BV) therapy is still controversial, with opinions ranging from constituent-based pharmacological action to homeopathic-like activity. The purpose of this study was to examine whether BV phospholipase A2 (bvPLA2), an enzymatic component of BV, is a novel anti-inflammatory and anti-arthritic mediator capable of stimulating CD25+ Foxp3+ regulatory T cell (Treg) polarization in a mouse model of human rheumatoid arthritis (RA). An experimental model of RA was established in male DBA/1 mouse by 2-week-interval injections of 100 μg type II collagen emulsified in complete (first injection) or incomplete Freund’s adjuvant (second injection) at the base of the tail. During arthritis development, bvPLA2 (0.1, 0.5, 1.0 mg/kg) and/or Treg inhibitors such as anti-CD25 antibodies and peptide 60 (P60) were injected intraperitoneally for 5 weeks. Arthritic symptoms and the expansion of Tregs were then assessed by behavioral assessments, histological and micro-CT imaging, and flow cytometry. bvPLA2 injections significantly alleviated arthritic behaviors such as squeaking and joint swelling, consistent with changes seen on both histological and micro-CT images. The anti-arthritic effects of bvPLA2 were blocked by intraperitoneal injections of 0.25 mg/kg anti-CD25 antibody and 10 μg/kg P60, as determined by behavioral assessments. Flow cytometric analysis of dendritic cells, B cells, and major T cell subsets from spleens revealed a significant depletion of Tregs following anti-CD25 antibody, but not P60, treatment. bvPLA2 treatment exerted significant anti-inflammatory and anti-arthritic activities in a mouse model of RA via the induction of Tregs.


Sign in / Sign up

Export Citation Format

Share Document