On a Simulation Analysis Method of Automotive Frame using Direct Dynamic Stiffness Approach

Author(s):  
G. V. Narayanan
2012 ◽  
Vol 40 (1) ◽  
pp. 25-41 ◽  
Author(s):  
H. M. R. Aboutorabi ◽  
L. Kung

Abstract REFERENCE: H. M. R. Aboutorabi and L. Kung, “Application of Coupled Structural Acoustic Analysis and Sensitivity Calculations to a Tire Noise Problem,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January – March 2012, pp. 25–41. ABSTRACT: Tire qualification for an original equipment (OE) program consists of several rounds of submissions by the tire manufacturer for evaluation by the vehicle manufacturer. Tires are evaluated both subjectively, where the tire performance is rated by an expert driver, and objectively, where sensors and testing instruments are used to measure the tire performance. At the end of each round of testing the evaluation results are shared and requirements for performance improvement for the next round are communicated with the tire manufacturer. As building and testing is both expensive and time consuming predictive modeling and simulation analysis that can be applied to the performance of the tire is of great interest and value. This paper presents an application of finite element analysis (FEA) modeling along with experimental verification to solve tire noise objections at certain frequencies raised by an original equipment manufacturer (OEM) account. Coupled structural-acoustic analysis method was used to find modal characteristics of the tire at the objectionable frequencies. Sensitivity calculations were then carried out to evaluate the strength of contribution from each tire component to the identified modes. Based on these findings changes to the construction were proposed and implemented that addressed the noise issue.


2018 ◽  
Vol 22 (S1) ◽  
pp. 2255-2261 ◽  
Author(s):  
Xi Fei ◽  
Sun Youfu ◽  
Ruan Xuejun

Author(s):  
Takao Kondo ◽  
Kazuaki Kitou ◽  
Masao Chaki ◽  
Yukiharu Ohga ◽  
Takeshi Makigami

Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR’s merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test with varied SSR geometry parameters, the transient test, and the simulation analysis of these steady state and transient tests. The steady state test results showed that the basic functioning principle such as the controllability of SSR water level by flow rate was maintained in the possible range of geometry parameters. The transient test results showed that the change rate of SSR water level was slower than the initiating parameters. The simulation analysis of steady state and transient test showed that the analysis method can simulate the height of SSR water level and its change with a good agreement. As a result, it is shown that the SSR design concept and its analysis method are feasible in both steady state and transient conditions.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 938-942 ◽  
Author(s):  
Xiaowei Yin ◽  
Wenxue Qian ◽  
Hoang Pham

AbstractEscalators are now more and more widely used around the world. As escalator accidents occur from time to time, it is very important to analyze the structure and reliability of escalators. This paper studies the structure and reliability analysis methods of typical escalators. By applying parametric analysis methods, the efficiency and accuracy of escalator structure analysis are greatly improved. Because the failure of each structural member of the escalator truss system is dependent, this paper applies the dependent failure reliability modeling method and analyzes the reliability of the escalator truss system. The results show that the reliability analysis method of the truss system after considering the dependent failure is more reasonable. The above research work has certain reference significance for the design and analysis of escalators.


2012 ◽  
Vol 166-169 ◽  
pp. 1554-1557
Author(s):  
Xiao Dong Wang ◽  
Wen Zhong Zheng ◽  
Ying Wang

Rational evaluation for stress increase of unbonded tendon at ultimate is the basis to exactly compute flexural load bearing capacity of unbonded prestressed concrete beams. Moment-curvature nonlinear analysis method is adopted to compile programs for calculating stress increase at ultimate in unbonded prestressed continuous beams. The precision of the method is proved by comparing results of 16 experimental two-span unbonded prestressed continuous beams to the prediction value of stress increase at ultimate. Based on the simulation analysis, law of the influence of some basic factors to stress increase at ultimate in unbonded tendons in continuous beams is obtained, such as non-prestressed reinforcement index, prestressed reinforcement index, ratio of span to depth and loading type. Then formulas for calculating stress increase at ultimate in unbonded tendons in prestressed concrete continuous beams were established.


2012 ◽  
Vol 178-181 ◽  
pp. 2219-2223 ◽  
Author(s):  
Rong Ling Zhang ◽  
Liang Wang ◽  
Chang An Yang ◽  
Bing Yang ◽  
Chang Yue Zhu ◽  
...  

The actual bowstring arch CFST is taken as the background,the paper using finite element analysis method, researched the shrinkage and creep of combination of steel and concrete structure. Through the use of different countries regulation of shrinkage and creep of concrete, the effects of the structure deflection separately were studied ,then explain the different influence degree of different norms in the calculation of the creep and shrinkage of concrete; The paper also has also put forward the doubt about accurate calculation concrete filled steel tubular structure shrinkage and creep of concrete, it puts forward new requirements for the research and standards about steel tube concrete shrinkage and creep at last.


2014 ◽  
Vol 986-987 ◽  
pp. 187-191
Author(s):  
Bo Zeng ◽  
Kai Wang ◽  
Xiang Yu Kong ◽  
Yi Zeng ◽  
Qun Yang

With high penetration of distributed generation connected to the grid, distribution system will have some huge impacts, and system reliability calculation models and assessment methods are changing. Based on Monte-Carlo method, a heuristic reliability analysis method for distribution system with distributed generations was proposed in the paper, which focuses on the mode of distributed generation in parallel to system power supply. Functional role of distributed generation in the power distribution system failure and distributed power adapter with load strategies were analyzed in this method. Cases simulation analysis was used to verify its effectiveness.


2015 ◽  
Vol 656-657 ◽  
pp. 353-356
Author(s):  
Takashi Onishi ◽  
Moriaki Sakakura ◽  
Yusuke Nakano ◽  
Makoto Harada ◽  
Kazutoshi Kawakami ◽  
...  

In surface grinding, the shape error is occurred by the thermal deformation of a ground workpiece. To finish the workpiece with high accuracy, it is necessary to understand the temperature distribution of the workpiece during grinding process. However there is no study to analyze the temperature distribution of a large workpiece during surface grinding process. In this study, an advanced simulation analysis method of the temperature distribution for a large workpiece was developed. In the developed simulation analysis method, the temperature distribution was calculated from the power consumption of the wheel motor. The power consumption can be obtained easily without any specialized equipment. To evaluate the developed simulation analysis method, in-process measurement of the temperature distribution of a large workpiece was also carried out. A large workpiece ground in this study weights about 1.3 tons. The temperature distribution was measured with thermistors mounted in many places of the ground workpiece. At the area close to the grinding surface, it was found that temperature rises immediately after the passage of grinding wheel with measuring the developed in-process measurement system. On the other hand, at the area far from the grinding point, temperature does not change quickly. The in-process measured temperature distribution agreed well with the simulated results.


Author(s):  
Katsuhisa Fujita ◽  
Taisuke Nosaka ◽  
Tomohiro Ito

Many structures such as support columns such as those for elevated expressways and towers tend to become larger and more flexible recently, thus the buckling or collapse of these structures is considered to easily occur than ever due to huge earthquakes. Actually, in the Hyogo-ken Nambu earthquake in Japan, buckling phenomena of tall support columns were observed every-where. Therefore, the evaluation technology on the dynamic stability is very important in order to ensure the seismic design reliability for these structures. The authors have ever studied the effects of the horizontal and vertical simultaneous excitations on the above-mentioned buckling phenomena of support columns experimentally. More-over, they also investigated the fundamental phenomena of the dynamic stability of the support columns subjected to the horizontal and vertical excitations simultaneously by numerical simulations using an analytical model where the support column is treated as a tall elastic cantilever beam. The purpose of this paper is on the dynamic instability, that is dynamic buckling, of a cylindrical shell structures such as those for elevated expressways, towers, containment vessels, LNG tanks and water tanks in various industrial plants so on subjected to horizontal and vertical excitations simultaneously. The coupled motion of equation with horizontal and vertical excitations simultaneously for these cylindrical shell structures is derived in this paper, and this modeling is shown to become a Mathieu type’s parametric excitation. The numerical simulation analysis is carried out for a cylindrical shell model with an attached mass on its tip. Comparing with the classical seismic analysis method, this proposed dynamic instability analysis method shows the larger deformation in horizontal direction due to the parametric excitation of the vertical seismic wave. As the results, the structures are apt to lose the structural stability more due to the coupling effects between the horizontal and vertical seismic simultaneous loadings.


2021 ◽  
pp. 1-24
Author(s):  
Guan Guan ◽  
Hongling Liao ◽  
Qu Yang

In order to effectively improve the assembly efficiency for hull blocks, an assembly simulation analysis method considering engineering constraints is proposed in this paper, and an integrated system of shipbuilding accuracy analysis and assembly analysis considering multi-constraints is developed. The method is divided into pre-matching model and fine matching model. In the pre-matching model, an Improved Coherent Point Drift (ICPD) algorithm is used to obtain more accurate initial matching values. The fine matching model firstly uses the Analytic Hierarchy Process (AHP) algorithm to automatically obtain the constrained weights, then the weights vector is used to add the assembly constraints for hull blocks such as straightness, hard point constraints etc. into the multi-objective optimization function. By solving the function, the optimum positioning location and the most reasonable adjustment scheme are obtained. This method shortens the occupancy time of the equipment used to build the hull, reduces the workload of the staff, and improves the efficiency and quality of shipbuilding. The integrated system adds engineering constraints analysis module and the function of automatically finding and eliminating error measurement points. Through the verification of the examples, the integrated system realizes the automation and intellectualization of the assembly for hull blocks.


Sign in / Sign up

Export Citation Format

Share Document