Optimizing Base Oil Viscosity Temperature Dependence For Power Cylinder Friction Reduction

Author(s):  
Michael J. Plumley ◽  
Victor Wong ◽  
Mark Molewyk ◽  
Soo-Youl Park
2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Wang Li-jun ◽  
Guo Chu-wen ◽  
Ryuichiro Yamane

The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules; however, few experimental investigations on the tribological properties of lubricating oils with and without nanoferromagnetic particles have been performed. This work investigates the tribological properties of Mn0.78Zn0.22Fe2O4 nanoferromagnetic as additive in 46# turbine oil using a four-ball friction and wear tester. It is shown that the 46# turbine oil containing Mn0.78Zn0.22Fe2O4 nanoparticles has much better friction reduction and antiwear abilities than the base oil. The 46# turbine oil doped with 6wt%Mn0.78Zn0.22Fe2O4 nanoparticles show the best tribological properties among the tested oil samples, and PB value is increased by 26%, and the decreasing percentage of wear scar diameter is 25.45% compared to base oil.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Hiroyuki Ohta ◽  
Shinya Hayashi ◽  
Soichiro Kato ◽  
Yutaka Igarashi

This paper deals with effects of grease types on vibrations and acoustic emissions (AEs) of linear-guideway type recirculating ball bearings with a millimeter-sized artificial defect in the carriage. First, the vibration and AE of one normal bearing without a defect (Type N) and six defective bearings (Types D1–D6) were measured using a linear velocity of 1 m/s. Three types of grease are used for the lubrication of test bearings. The experimental results show that the vibration and AE amplitudes (the pulse amplitudes, the root-mean-square (RMS) values, and component amplitudes in the spectra) of both the normal and defective bearings have a tendency to be reduced when a grease with higher base oil viscosity is used. Under the same type of grease, the RMS values of the vibrations and AE of the defective bearings increase as the defect angle increases. However, the increases of the RMS values due to increased defect angle (the increasing rates of the RMS values) are reduced when a grease with higher base oil viscosity is used. To explain these experimental results, grease impact tests are carried out. The grease impact tests show that a grease with higher base oil viscosity reduces the impact velocity and the maximum impact forces. This implies that a grease with higher base oil viscosity generate greater viscous resistance to balls in the test bearings then reduces the ball impact forces in the ball circulation collisions and ball-defect collisions. Because of the reduction of the ball impact forces, both the vibration and AE amplitudes as well as the increasing rate of the RMS values are reduced.


2019 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Na Wu ◽  
Ningning Hu ◽  
Jinhe Wu ◽  
Gongbo Zhou

The microscale/nanoscale lamellar-structure WS2 particles with sizes of 2 µm and 500 nm were synthesized by solid-phase reaction method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The synergies between microscale/nanoscale WS2 particles and ZDDP as lubricating oil additives was evaluated by means of UMT-2 tribometer at room temperature. The wear scars were examined with SEM and electron-probe micro-analyzer (EPMA). The results show that the anti-wear properties were improved and the friction coefficient was greatly decreased with the simultaneous addition of WS2 particles and ZDDP, and the largest reduction of friction coefficient was 47.2% compared with that in base oil. Moreover, the presence of ZDDP additive in the lubricant further enhances the friction-reduction and anti-wear effect of microscale/nanoscale WS2. This confirms that there is a synergistic effect between WS2 particles and ZDDP.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 75
Author(s):  
Takefumi Otsu ◽  
Romeo Glovnea ◽  
Joichi Sugimura

This article describes experimental and theoretical studies on the cavitation phenomena in the grease lubrication film under pure sliding elastohydrodynamic contact. In situ observation tests using the optical interferometry technique were conducted, and the growth of cavitation was captured using a high-speed camera. The results showed that the cavity grew in two stages, which was similar to the behavior in the base oil, and that the cavity growth rate in the initial stage was higher than that in the second stage. In the initial stage, the cavity growth time in the grease was longer than that in the base oil, and the cavity length after the growth depended on the base oil viscosity. It was also found in the test using diurea grease that small cavities were formed by the lumps of thickener. The cavity growth in the initial stage was discussed by numerical simulation of pressure distribution based on a simple rheological model.


Author(s):  
M Kaneta ◽  
T Ogata ◽  
Y Takubo ◽  
M Naka

The effects of the thickener structure and base oil viscosity on the grease film formation in rolling point elastohydrodynamic contacts have been discussed on the basis of direct observation using the optical interferometry technique. Three different types of diurea greases without additives have been used as test greases. As the base oils three kinds of ether-type synthetic oils having similar molecular structures but different viscosities were used. The film behaviour of fresh greases has also been compared with that of the degraded greases. It has been found that the behaviour of grease elastohydrodynamic lubrication films is basically influenced by the thickener structure and base oil viscosity. The adhesion or deposition of the thickener on the contacting surfaces and oil starvation which affect film formation depend on the thickener structure, base oil viscosity and rolling speed. Furthermore, it has been suggested that there is an optimum temperature which gives a maximum film thickness according to the consistency of the grease.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Flavio A. C. Vidal ◽  
Antonio F. Ávila

A top-down approach is employed to investigate the tribological effect of adding nanographite platelets (NGPs) to mineral base oil (MBO). The performance of the NGP-modified MBO was evaluated by examining the friction and anti-wear properties. Four different types of NGPs produced by two different processes were employed. The optimal NGP-modified MBO attained a significant wear and friction reduction when compared with the MBO without NGPs. The process used to exfoliate the graphite nanoplatelet samples provided better wear properties because of the graphene layers' smoother sliding mechanism. Graphene layers seeped inside the groove marks to keep the friction coefficient low.


Author(s):  
Hiroyuki Ohta ◽  
Shinya Hayashi ◽  
Soichiro Kato ◽  
Yutaka Igarashi

In this paper, vibrations and acoustic emissions (AEs) of defective linear-guideway type recirculating ball bearings under grease lubrication were measured. The experimental results show that the vibration and AE amplitudes (the pulse amplitudes, the RMS values) of both the normal and defective bearings have a tendency to be reduced when a grease with higher base oil viscosity is used. Under the same type of grease, the RMS values of the vibrations and AE of the defective bearings increase as the defect angle increases. However, the increases of the RMS values due to increased defect angle are reduced when a grease with higher base oil viscosity is used.


MTZ worldwide ◽  
2014 ◽  
Vol 75 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Wolfgang Hanke ◽  
Hajime Ando ◽  
Matthias Fahr ◽  
Marco Voigt

Friction ◽  
2020 ◽  
Author(s):  
Guanlin Ren ◽  
Xiaowen Sun ◽  
Wen Li ◽  
Hao Li ◽  
Lin Zhang ◽  
...  

Abstract Thickener formulation plays a significant role in the performance characteristics of grease. The polyurea greases (PUGs) were synthesized using mineral oil (500SN) as the base oil, and by regulating the reaction of diphenylmethane diisocyanate (MDI) and different organic amines. The as-prepared PUGs from the reaction of MDI and cyclohexylamine/p-toluidine exhibit the optimum physicochemical and friction-wear properties, confirming that the regulation of thickener formulation can improve the performance characteristics of grease, including friction reduction, wear, corrosion resistance, and load-carrying capacity. The anticorrosion and lubrication properties of as-prepared PUGs depend on good sealing functions and a boundary lubrication film (synergy of grease-film and tribo-chemical reaction film), as well as their chemical components and structure.


Sign in / Sign up

Export Citation Format

Share Document