Influence of Oxy-Fuel Combustion on Engine Operating Conditions and Combustion Characteristics in a High Speed Direct Injection (HSDI) Diesel Engine under Homogenous Charge Compression Ignition (HCCI) Mode

2020 ◽  
Author(s):  
Raouf Mobasheri ◽  
Abdel Aitouche ◽  
Zhijun Peng ◽  
Xiang Li
Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Author(s):  
I P Gilbert ◽  
A R Heath ◽  
I D Johnstone

The need to increase power, to improve fuel economy and to meet stringent exhaust emissions legislation with a high level of refinement has provided a challenge for the design of a compact high-speed direct injection (HSDI) diesel engine. This paper describes various aspects of cylinder head design with particular consideration of layout and number of valves, valve actuation, port selection strategy, fuel injection systems and cylinder head construction.


Author(s):  
J A Stephenson ◽  
B A Hood

The paper describes the development of a high-speed direct injection (HSDI) diesel engine suitable for passenger car applications. The evolution from a low emissions medium-speed engine, through a four-cylinder 2.3 litre research engine, into a four-cylinder 2.0 litre production engine is presented. The challenge to the engineer has been to develop the HSDI engine to operate with acceptable noise, emissions, smoke and driveability over the wide speed range (up to 5000 r/min) required for passenger cars. The key element in this task was the optimization of the combustion system and fuel injection equipment. The HSDI is shown to have a significant fuel economy advantage over the prechamber indirect injection (IDI) engine. Future developments of the fuel injection system are described which will further enhance the HSDI engine and provide additional noise and emissions control.


Author(s):  
T-G Fang ◽  
R E Coverdill ◽  
C-F F Lee ◽  
R A White

An optically accessible high-speed direct-injection diesel engine was used to study the effects of injection angles on low-sooting combustion. A digital high-speed camera was employed to capture the entire cycle combustion and spray evolution processes under seven operating conditions including post-top-dead centre (TDC) injection and pre-TDC injection strategies. The nitrogen oxide (NO x) emissions were also measured in the exhaust pipe. In-cylinder pressure data and heat release rate calculations were conducted. All the cases show premixed combustion features. For post-TDC injection cases, a large amount of fuel deposition is seen for a narrower-injection-angle tip, i.e. the 70° tip, and ignition is observed near the injector tip in the centre of the bowl, while for a wider-injection-angle tip, namely a 110° tip, ignition occurs near the spray tip in the vicinity of the bowl wall. The combustion flame is near the bowl wall and at the central region of the bowl for the 70° tip. However, the flame is more distributed and centralized for the 110° tip. Longer spray penetration is found for the pre-TDC injection timing cases. Liquid fuel impinges on the bowl wall or on the piston top and a fuel film is formed. Ignition for all the pre-TDC injection cases occur in a distributed way in the piston bowl. Two different combustion modes are observed for the pre-TDC injection cases including a homogeneous bulky combustion flame at earlier crank angles and a heterogeneous film combustion mode with luminous sooting flame at later crank angles. In terms of soot emissions, NO x emissions, and fuel efficiency, results show that the late post-TDC injection strategy gives the best performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Devendra Singh ◽  
Fengshou Gu ◽  
John D. Fieldhouse ◽  
Nishan Singh ◽  
S. K. Singal

Automotive industries made a paradigm shift in selection of viscometrics of engine lubricant, from higher to lower viscosity grade, for improving fuel economy of vehicles. Engine fuel consumption is influenced by friction between the various engine components. Engine friction power (FP) of a direct injection diesel engine is calculated from the measured value of in-cylinder pressure signals at various operating conditions. For predicting FP, as a function of speed, load, and lubricant viscosity, a full factorial design of experiments (DOE) was formulated and an empirical correlation was developed. Response surface methodology (RSM) was used for analyzing the dominant parameters and their interactions, which influence engine friction power significantly. Predicted results of engine FP are in good agreement with measured values at all operating points. ANOVA and RSM analysis revealed that the significant parameters influencing engine FP are speed, load, viscosity, speed-load, and speed-viscosity. The effect of engine lubricant viscosity on friction power of a diesel engine was insignificant at low speed, whereas, at high speed, it played a vital role. The empirical relation developed for predicting FP is very useful in estimating engine friction power for various combinations of engine speeds, loads, and lubricant viscosity without running the engine.


Author(s):  
T. Cerri ◽  
A. Onorati ◽  
E. Mattarelli

The paper analyzes the operations of a small high speed direct injection (HSDI) turbocharged diesel engine by means of a parallel experimental and computational investigation. As far as the numerical approach is concerned, an in-house 1D research code for the simulation of the whole engine system has been enhanced by the introduction of a multizone quasi-dimensional combustion model, tailored for multijet direct injection diesel engines. This model takes into account the most relevant issues of the combustion process: spray development, air-fuel mixing, ignition, and formation of the main pollutant species (nitrogen oxide and particulate). The prediction of the spray basic patterns requires previous knowledge of the fuel injection rate. Since the direct measure of this quantity at each operating condition is not a very practical proceeding, an empirical model has been developed in order to provide reasonably accurate injection laws from a few experimental characteristic curves. The results of the simulation at full load are compared to experiments, showing a good agreement on brake performance and emissions. Furthermore, the combustion model tuned at full load has been applied to the analysis of some operating conditions at partial load, without any change to the calibration parameters. Still, the numerical simulation provided results that qualitatively agree with experiments.


Sign in / Sign up

Export Citation Format

Share Document