scholarly journals Prediction and Analysis of Engine Friction Power of a Diesel Engine Influenced by Engine Speed, Load, and Lubricant Viscosity

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Devendra Singh ◽  
Fengshou Gu ◽  
John D. Fieldhouse ◽  
Nishan Singh ◽  
S. K. Singal

Automotive industries made a paradigm shift in selection of viscometrics of engine lubricant, from higher to lower viscosity grade, for improving fuel economy of vehicles. Engine fuel consumption is influenced by friction between the various engine components. Engine friction power (FP) of a direct injection diesel engine is calculated from the measured value of in-cylinder pressure signals at various operating conditions. For predicting FP, as a function of speed, load, and lubricant viscosity, a full factorial design of experiments (DOE) was formulated and an empirical correlation was developed. Response surface methodology (RSM) was used for analyzing the dominant parameters and their interactions, which influence engine friction power significantly. Predicted results of engine FP are in good agreement with measured values at all operating points. ANOVA and RSM analysis revealed that the significant parameters influencing engine FP are speed, load, viscosity, speed-load, and speed-viscosity. The effect of engine lubricant viscosity on friction power of a diesel engine was insignificant at low speed, whereas, at high speed, it played a vital role. The empirical relation developed for predicting FP is very useful in estimating engine friction power for various combinations of engine speeds, loads, and lubricant viscosity without running the engine.

Author(s):  
B. B. Sahoo ◽  
U. K. Saha ◽  
N. Sahoo ◽  
P. Prusty

The fuel efficiency of a modern diesel engine has decreased due to the recent revisions to emission standards. For an engine fuel economy, the engine speed is to be optimum for an exact throttle opening (TO) position. This work presents an analysis of throttle opening variation impact on a multi-cylinder, direct injection diesel engine with the aid of Second Law of thermodynamics. For this purpose, the engine is run for different throttle openings with several load and speed variations. At a steady engine loading condition, variation in the throttle openings has resulted in different engine speeds. The Second Law analysis, also called ‘Exergy’ analysis, is performed for these different engine speeds at their throttle positions. The Second Law analysis includes brake work, coolant heat transfer, exhaust losses, exergy efficiency, and airfuel ratio. The availability analysis is performed for 70%, 80%, and 90% loads of engine maximum power condition with 50%, 75%, and 100% TO variations. The data are recorded using a computerized engine test unit. Results indicate that the optimum engine operating conditions for 70%, 80% and 90% engine loads are 2000 rpm at 50% TO, 2300 rpm at 75% TO and 3250 rpm at 100% TO respectively.


Author(s):  
T-G Fang ◽  
R E Coverdill ◽  
C-F F Lee ◽  
R A White

An optically accessible high-speed direct-injection diesel engine was used to study the effects of injection angles on low-sooting combustion. A digital high-speed camera was employed to capture the entire cycle combustion and spray evolution processes under seven operating conditions including post-top-dead centre (TDC) injection and pre-TDC injection strategies. The nitrogen oxide (NO x) emissions were also measured in the exhaust pipe. In-cylinder pressure data and heat release rate calculations were conducted. All the cases show premixed combustion features. For post-TDC injection cases, a large amount of fuel deposition is seen for a narrower-injection-angle tip, i.e. the 70° tip, and ignition is observed near the injector tip in the centre of the bowl, while for a wider-injection-angle tip, namely a 110° tip, ignition occurs near the spray tip in the vicinity of the bowl wall. The combustion flame is near the bowl wall and at the central region of the bowl for the 70° tip. However, the flame is more distributed and centralized for the 110° tip. Longer spray penetration is found for the pre-TDC injection timing cases. Liquid fuel impinges on the bowl wall or on the piston top and a fuel film is formed. Ignition for all the pre-TDC injection cases occur in a distributed way in the piston bowl. Two different combustion modes are observed for the pre-TDC injection cases including a homogeneous bulky combustion flame at earlier crank angles and a heterogeneous film combustion mode with luminous sooting flame at later crank angles. In terms of soot emissions, NO x emissions, and fuel efficiency, results show that the late post-TDC injection strategy gives the best performance.


Author(s):  
T. Cerri ◽  
A. Onorati ◽  
E. Mattarelli

The paper analyzes the operations of a small high speed direct injection (HSDI) turbocharged diesel engine by means of a parallel experimental and computational investigation. As far as the numerical approach is concerned, an in-house 1D research code for the simulation of the whole engine system has been enhanced by the introduction of a multizone quasi-dimensional combustion model, tailored for multijet direct injection diesel engines. This model takes into account the most relevant issues of the combustion process: spray development, air-fuel mixing, ignition, and formation of the main pollutant species (nitrogen oxide and particulate). The prediction of the spray basic patterns requires previous knowledge of the fuel injection rate. Since the direct measure of this quantity at each operating condition is not a very practical proceeding, an empirical model has been developed in order to provide reasonably accurate injection laws from a few experimental characteristic curves. The results of the simulation at full load are compared to experiments, showing a good agreement on brake performance and emissions. Furthermore, the combustion model tuned at full load has been applied to the analysis of some operating conditions at partial load, without any change to the calibration parameters. Still, the numerical simulation provided results that qualitatively agree with experiments.


Author(s):  
S N M Haines ◽  
S A Shields

The use of electronically controlled unit injectors on a high-speed direct injection diesel engine has allowed the development of a new technique for measuring motoring losses. The digital engine controller is programmed to skip successive numbers of injections in a specific circulating sequence, while dynamometer load is adjusted to maintain the desired speed. The linearity between required brake torque and the proportion of disabled to normal injection cycles permits extrapolation of results to find the negative load that would be required to motor the engine at that speed. The method appears to yield more reliable results than traditional approaches, and gives hot motoring values of mean effective torque without the need for external heating or a motoring facility. The equipment and method involved are described, and readings obtained for the whole speed range are presented. These are correlated with losses estimated from pressure measurements, and compared with friction characteristics produced by alternative techniques.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2000 ◽  
Vol 123 (1) ◽  
pp. 117-124 ◽  
Author(s):  
H.-Q. Liu ◽  
N. G. Chalhoub ◽  
N. Henein

A nonlinear dynamic model is developed in this study to simulate the overall performance of a naturally aspirated, single cylinder, four-stroke, direct injection diesel engine under cold start and fully warmed-up conditions. The model considers the filling and emptying processes of the cylinder, blowby, intake, and exhaust manifolds. A single zone combustion model is implemented and the heat transfer in the cylinder, intake, and exhaust manifolds are accounted for. Moreover, the derivations include the dynamics of the crank-slider mechanism and employ an empirical model to estimate the instantaneous frictional losses in different engine components. The formulation is coded in modular form whereby each module, which represents a single process in the engine, is introduced as a single block in an overall Simulink engine model. The numerical accuracy of the Simulink model is verified by comparing its results to those generated by integrating the engine formulation using IMSL stiff integration routines. The engine model is validated by the close match between the predicted and measured cylinder gas pressure and engine instantaneous speed under motoring, steady-state, and transient cold start operating conditions.


Author(s):  
I P Gilbert ◽  
A R Heath ◽  
I D Johnstone

The need to increase power, to improve fuel economy and to meet stringent exhaust emissions legislation with a high level of refinement has provided a challenge for the design of a compact high-speed direct injection (HSDI) diesel engine. This paper describes various aspects of cylinder head design with particular consideration of layout and number of valves, valve actuation, port selection strategy, fuel injection systems and cylinder head construction.


Sign in / Sign up

Export Citation Format

Share Document