Mechanical and Tribological Behavior of Mg-Matrix Composites Manufactured by Stir Casting

Author(s):  
R. Praveenkumar ◽  
P. Periyasamy ◽  
V. Mohanavel ◽  
M.M. Ravikumar

In the recent decades, magnesium matrix composites present a plenty of applications in automotive, marine and aerospace industries. In this work, AZ31B is selected as Mg matrix material and hard Tungsten carbide (WC) particles as reinforcement material. Mg/WC composites are reinforced with different weight proportions (0, 5, 10 and 15% wt.) using stir casting method. The worn surface of manufactured Mg/WC composites and base Mg material were examined by scanning electron microscope (SEM). The wear test results denote that AZ31B/15% wt. WC composites have excellent tribological behaviour when compared to the base magnesium matrix AZ31B alloy. The yield tensile strength, flexural strength, ultimate tensile strength and micro-hardness of the manufactured composites are improved by increasing the WC content. Further, SEM analysis revealed the homogeneous distribution of WC particles throughout the Mg matrix.

Author(s):  
R. Praveenkumar ◽  
P. Periyasamy ◽  
V. Mohanavel ◽  
M.M. Ravikumar

In the recent decades, magnesium matrix composites present a plenty of applications to automotive, marine and aerospace industries. In this work, AZ31B is selected as Mg matrix material and hard Tungsten carbide (WC) particles as reinforcement material. Mg/WC composites reinforced with different weight proportions (0, 5, 10 and 15 wt.%) were made through stir casting method. The worn surface of manufactured Mg/WC composites and base Mg material were examined by scanning electron microscope (SEM). The wear test results denoted that the AZ31B/15 wt% WC composites have excellent tribological behaviour when compared to the base magnesium matrix AZ31B alloy. The yield strength, flexural strength, tensile strength and micro-hardness of the manufactured composites are improved by increasing the WC content. SEM images reveal the homogeneous distribution of WC particles throughout the Mg matrix.


2009 ◽  
Vol 44 (11) ◽  
pp. 2759-2764 ◽  
Author(s):  
X. J. Wang ◽  
X. S. Hu ◽  
K. Wu ◽  
M. Y. Zheng ◽  
L. Zheng ◽  
...  

In this research, an effort is made to familiarize and best potentials of the reinforcing agent in aluminum 7075 matrices with naturally occurring Beryl (Be) and Graphene (Gr) to develop a new hybrid composite material. A stir casting technique was adopted to synthesize the hybrid nanocomposites. GNPS were added in volume fractions of 0.5wt%, 1wt%, 1.5wt%, and 2wt% and with a fixed volume fraction of 6 wt.% of Beryl. As cast hybrid composites were microstructurally characterized with scanning electron microscopy and X-ray diffraction. Microstructure study through scanning electron microscope demonstrated that the homogeneous distribution reinforcement Beryl and GNPs into the Al7075 matrix. Brinell hardness and tensile strength of synthesized materials were investigated. The hybrid Al7075-Beryl-GNPs composites showed better mechanical properties compared with base Al7075 matrix material. The ascast Al7075-6wt.% Beryl-2wt.%GNPs showed 49.41% improvement in hardness and 77.09% enhancement in ultimate tensile strength over Al7075 alloy.


2011 ◽  
Vol 142 ◽  
pp. 229-232
Author(s):  
Jian Xiong Ye ◽  
Fa Yun Zhang

Magnesium matrix composites are prepared with a hybrid optimizing metod here. Different SiC volume fractions, processing temperature and stirring time have different influence on tensile strength and elongation of SiC; but how to find out the satisfied treating parameters is an unavoidable question, a hybrid method is put out and experiments prove the effectiveness of research work.


2021 ◽  
Vol 15 (2) ◽  
pp. 234-243
Author(s):  
Oluseyi Orisadare ◽  
Ayodeji S. Olawore ◽  
Michael O. Ibiwoye ◽  
Eyitayo A. Ponle ◽  
Omolola T. Odeyemi ◽  
...  

Metal matrix composites (MMCs) are materials in which metals are reinforced with other materials preferably of lower cost to improve their properties. In this present study, Brass /Coconut Shell Ash powder (CSAp) composites having 0%, 5%, 10% and 15% weight CSAp were fabricated by stir-casting method. The tensile strength of the MMCs is in the order 15% > 10% >5% > 0% of CSAp. Hardness of the MMCs increases slightly with increase in the percentage body weight of CSAp, in the order 15% > 10% >5% > 0% of CSAp. The highest impact energy of 61 J was obtained for 5% CSAp. However, significant improvement in tensile strength and hardness values was noticeable at the 15%. Scanning Electron Microscopy (SEM) analysis of the MMCs shows dendritic structures formation, the reinforcing particles (CSAp) are visible and clearly delineated in the microstructure. Hence, this study has established that reinforcing brass matrix with coconut shell ash particles can result in the production of low cost brass composites with enhanced tensile strength, hardness and impact energy values.  


2020 ◽  
Vol 8 (6) ◽  
pp. 1191-1195

This paper focuses the Mechanical properties and tribological behaviour of aluminium (6063) metal which are reinforced with silicon carbide and graphite. Different percentages like7 %, 10%, 12% of silicon carbide and 3%, 5%, 8% of Graphite were added for reinforcement. The manufacturing of components is made by using stir casting method. Mechanical properties like (fatigue, impact, micro structure) and wear test are carried out in this paper. The result concluded that there is an increase in the mechanical and tribological properties with increase in weight percentage of reinforcement.


Sign in / Sign up

Export Citation Format

Share Document