Significance of Buongiorno Model and Arrhenius Pre-exponential Factor Law to Entropy Optimized Darcy Forchheimer Hybrid Nanoparticle (Al₂O₃, Cu) Flow Over Thin Needle

2021 ◽  
Vol 26 (4) ◽  
pp. 363-377
Author(s):  
S. Shaw ◽  
M. IjazKhan ◽  
M.K. Nayak ◽  
J. K. Madhukesh ◽  
R. S. Varun Kumar ◽  
...  
Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


2020 ◽  
Vol 5 (8) ◽  
pp. 1428-1436
Author(s):  
Anu Saini ◽  
Manpreet Kaur ◽  
Mayank ◽  
Anil Kuwar ◽  
Navneet Kaur ◽  
...  

Hybrid nanoassembly, fluorescent chemosensors, selective response to ketoprofen, and nanomolar detection.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Federica Palombarini ◽  
Silvia Masciarelli ◽  
Alessio Incocciati ◽  
Francesca Liccardo ◽  
Elisa Di Fabio ◽  
...  

Abstract Background In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. Results Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. Conclusion The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells. Graphic abstract


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Junjie Shu ◽  
Yang Wang ◽  
Bei Guo ◽  
Weihua Qin ◽  
Lanxuan Liu ◽  
...  

Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.


2021 ◽  
Vol 62 ◽  
pp. 378-387
Author(s):  
Vaibhav Singh ◽  
Anuj Kumar Sharma ◽  
Ranjeet Kumar Sahu ◽  
Jitendra Kumar Katiyar

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.


Shock Waves ◽  
2021 ◽  
Author(s):  
S. Bengoechea ◽  
J. Reiss ◽  
M. Lemke ◽  
J. Sesterhenn

AbstractAn optimisation study of a shock-wave-focusing geometry is presented in this work. The configuration serves as a reliable and deterministic detonation initiator in a pulsed detonation engine. The combustion chamber consists of a circular pipe with one convergent–divergent axisymmetric nozzle, acting as a focusing device for an incoming shock wave. Geometrical changes are proposed to reduce the minimum shock wave strength necessary for a successful detonation initiation. For that purpose, the adjoint approach is applied. The sensitivity of the initiation to flow variations delivered by this method is used to reshape the obstacle’s form. The thermodynamics is described by a higher-order temperature-dependent polynomial, avoiding the large errors of the constant adiabatic exponent assumption. The chemical reaction of stoichiometric premixed hydrogen-air is modelled by means of a one-step kinetics with a variable pre-exponential factor. This factor is adapted to reproduce the induction time of a complex kinetics model. The optimisation results in a 5% decrease of the incident shock wave threshold for the successful detonation initiation.


Author(s):  
Martina Maria Calvino ◽  
Lorenzo Lisuzzo ◽  
Giuseppe Cavallaro ◽  
Giuseppe Lazzara ◽  
Stefana Milioto

AbstractIn this paper, films based on sustainable polymers with variable charge have been investigated by non-isothermal thermogravimetry in order to predict their lifetime, which is a key parameter for their potential use in numerous technological and biomedical applications. Specifically, chitosan has been selected as positively charged biopolymer, while alginate has been chosen as negatively charged biopolymer. Among non-ionic polymers, methylcellulose has been investigated. Thermogravimetric measurements at variable heating rates (5, 10, 15 and 20 °C min−1) have been performed for all the polymers to study their degradation kinetics by using isoconversional procedures combined with ‘Master plot’ analyses. Both integral (KAS and Starink methods) and differential (Friedman method) isoconversional procedures have shown that chitosan possesses the highest energetic barrier to decomposition. Based on the Master plot analysis, the decomposition of ionic polymers can be described by the R2 kinetic model (contracted cylindrical geometry), while the degradation of methylcellulose reflects the D2 mechanism (two-dimensional diffusion). The determination of both the decomposition mechanism and the kinetic parameters (activation energy and pre-exponential factor) has been used to determine the decay time functions of the several biopolymers. The obtained insights can be helpful for the development of durable films based on sustainable polymers with variable electrostatic characteristics. Graphical abstract


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Ivan Vitázek ◽  
Martin Šotnar ◽  
Stella Hrehová ◽  
Kristína Darnadyová ◽  
Jan Mareček

The thermal decomposition of wood chips from an apple tree is studied in a static air atmosphere under isothermal conditions. Based on the thermogravimetric analysis, the values of the apparent activation energy and pre-exponential factor are 34 ± 3 kJ mol−1 and 391 ± 2 min−1, respectively. These results have also shown that this process can be described by the rate of the first-order chemical reaction. This reaction model is valid only for a temperature range of 250–290 °C, mainly due to the lignin decomposition. The obtained results are used for kinetic prediction, which is compared with the measurement. The results show that the reaction is slower at higher values of degree of conversion, which is caused by the influence of the experimental condition. Nevertheless, the obtained kinetic parameters could be used for the optimization of the combustion process of wood chips in small-scale biomass boilers.


Sign in / Sign up

Export Citation Format

Share Document