scholarly journals Monitoring Sugarcane Growth Phases Based on Satellite Image Analysis (A Case Study in Indramayu and its Surrounding, West Java, Indonesia)

2019 ◽  
Vol 26 (3) ◽  
pp. 117
Author(s):  
Tri Muji Susantoro ◽  
Ketut Wikantika ◽  
Agung Budi Harto ◽  
Deni Suwardi

This study is intended to examine the growing phases and the harvest of sugarcane crops. The growing phases is analyzed with remote sensing approaches. The remote sensing data employed is Landsat 8. The vegetation indices of Normalized Difference Vegetation Index (NDVI) and Enhanced Normalized Difference Vegetation Index (ENDVI) are employed to analyze the growing phases and the harvest of sugarcane crops. Field survey was conducted in March and August 2017. The research results shows that March is the peak of the third phase (Stem elonging phase or grand growth phase), the period from May to July is the fourth phase (maturing or ripening phase), and the period from August to October is the peak of harvest. In January, the sugarcane crops begin to grow and some sugarcane crops enter the third phase again. The research results also found the sugarcane plants that do not grow well near the oil and gas field. This condition is estimated due as the impact of hydrocarbon microseepage. The benefit of this research is to identify the sugarcane growth cycle and harvest. Having knowing this, it will be easier to plan the seed development and crops transport.

2019 ◽  
Vol 11 (13) ◽  
pp. 156 ◽  
Author(s):  
Allisson Lucas Brandão Lima ◽  
Roberto Filgueiras ◽  
Everardo Chartuni Mantovani ◽  
Daniel Althoff ◽  
Robson Argolo dos Santos ◽  
...  

Agricultural irrigation is involved in an important chain that involves all sectors of the economy, either directly, by increasing food production, or indirectly, by withdrawing large amounts of fresh water. The relevance of this theme forces the search for alternatives to make water use as rational as possible. Evapotranspiration estimation methods based in remote sensing, such as the SAFER (Simple Algorithm for Evapotranspiration Retrieving) model, become extremely relevant in these scenarios, since it is possible to estimate this parameter in large scales. Therefore, the aim of this research was to apply the SAFER model in the estimation of bean crop actual evapotranspiration using Landsat-8 satellite image data. One of the parameters used as input in the SAFER model is the NDVI (Normalized Difference Vegetation Index), which presented a coefficient of determination (r²) equal to 0.80 when compared to the crop coefficient. The actual evapotranspiration (ETa) estimated by the SAFER model were compared to the FAO 56 model estimates for later correlation between the models. This information is expected to assist the producer in a better management of water resources used in irrigation. The correlation between the two models presented a relevant coefficient of determination (r2 = 0.73), representing the potential of the SAFER model in relation to the FAO model 56.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


Author(s):  
Made Arya Bhaskara Putra ◽  
I Wayan Nuarsa ◽  
I Wayan Sandi Adnyana

Rice crop is one of the important commodities that must always be available, so estimation of rice production becomes very important to do before harvesting time to know the food availability. The technology that can be used is remote sensing technology using Landsat 8 Satellite. The aims of this study were (1) to obtain the model of estimation of rice production with Landsat 8 image analysis, and (2) to know the accuracy of the model that obtained by Landsat 8. The research area is located in three sub-districts in Klungkung regency. Analysis in this research was conducted by single band analysis and analysis of vegetation index of satellite image of Landsat 8. Estimation model of rice production was developed by finding the relationship between satellite image data and rice production data. The final stage is the accuracy test of the rice production estimation model, with t test and regression analysis. The results showed: (1) estimation of rice production can be calculated between 67 to 77 days after planting; (2) there was a positive correlation between NDVI (Normalized Difference Vegetation Index) vegetation index value with rice yield; (3) the model of rice production estimation is y = 2.0442e1.8787x (x is NDVI value of Landsat 8 and y is rice production); (4) The results of the model accuracy test showed that the obtained model is suitable to predict rice production with accuracy level is 89.29% and standard error of production estimation is + 0.443 ton/ha. Based on research results, it can be concluded that Landsat 8 Satellite image can be used to estimate rice production and the accuracy level is 89.29%. The results are expected to be a reference in estimating rice production in Klungkung Regency.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


Author(s):  
Perminder Singh ◽  
Ovais Javeed

Normalized Difference Vegetation Index (NDVI) is an index of greenness or photosynthetic activity in a plant. It is a technique of obtaining  various features based upon their spectral signature  such as vegetation index, land cover classification, urban areas and remaining areas presented in the image. The NDVI differencing method using Landsat thematic mapping images and Landsat oli  was implemented to assess the chane in vegetation cover from 2001to 2017. In the present study, Landsat TM images of 2001 and landsat 8 of 2017 were used to extract NDVI values. The NDVI values calculated from the satellite image of the year 2001 ranges from 0.62 to -0.41 and that of the year 2017 shows a significant change across the whole region and its value ranges from 0.53 to -0.10 based upon their spectral signature .This technique is also  used for the mapping of changes in land use  and land cover.  NDVI method is applied according to its characteristic like vegetation at different NDVI threshold values such as -0.1, -0.09, 0.14, 0.06, 0.28, 0.35, and 0.5. The NDVI values were initially computed using the Natural Breaks (Jenks) method to classify NDVI map. Results confirmed that the area without vegetation, such as water bodies, as well as built up areas and barren lands, increased from 35 % in 2001 to 39.67 % in 2017.Key words: Normalized Difference Vegetation Index,land use/landcover, spectral signature 


Author(s):  
Nguyen Quang Tuan ◽  
Do Thi Viet Huong ◽  
Doan Ngoc Nguyen Phong ◽  
Nguyen Dinh Van

This paper approaches the ratio image method to extract the exposed rock information from the Landsat 8 OLI/TIRS satellite image (2019) according to the object orientation classification. Combining automatic interpretation and interpretation through threshold of image index values according to interpretation key the object orientation classification to separate soil object containing exposed rock and no exposed rock in Thua Thien Hue province. Using the Topsoil Grain Size Index (TGSI), the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Built-up Index (NDBI) and other related analytical problems have identified 40 exposed rock storage areas in the study area. The results have been verified in the field and the Kappa index is 85.10%.


2021 ◽  
Vol 13 (17) ◽  
pp. 9897
Author(s):  
Jinhui Wu ◽  
Haoxin Li ◽  
Huawei Wan ◽  
Yongcai Wang ◽  
Chenxi Sun ◽  
...  

An explicit analysis of the impact for the richness of species of the vegetation phenological characteristics calculated from various remote sensing data is critical and essential for biodiversity conversion and restoration. This study collected long-term the Normalized Difference Vegetation Index (NDVI), the Leaf Area Index (LAI), the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and the Fractional Vegetation Cover (FVC), and calculated the six vegetation phenological characteristic parameters: the mean of the growing season, the mean of the mature season, the mean of the withered season, the annual difference value, the annual cumulative value, and the annual standard deviation in the Xinjiang Uygur Autonomous Region. The relationships between the vegetation phenological characteristics and the species richness of birds and mammals were analyzed in spatial distribution. The main findings include: (1) The correlation between bird diversity and vegetation factors is greater than that of mammals. (2) For remote sensing data, FAPAR is the most important vegetation parameter for both birds and mammals. (3) For vegetation phenological characteristics, the annual cumulative value of the LAI is the most crucial vegetation phenological parameter for influencing bird diversity distribution, and the annual difference value of the NDVI is the most significant driving factor for mammal diversity distribution.


Author(s):  
K. Narmada ◽  
K. Annaidasan

Aim: To study the carbon storage potential of Muthupet mangroves in Tamil Nadu using Remote sensing techniques. Place and Duration: The study is carried out in Muthupet Mangroves for the years 2000, 2010 and 2017. Methodology: In this study the remote sensing images were processed using the ERDAS and ArcGIS software and the NDVI (Normalized Difference Vegetation Index) has also been applied to estimate the quantity of carbon sequestration capability for the Avicennia marina mangrove growing in the Muthupet region for the period 2000-2017. The formula proposed by Lai [10] was used to calculate the carbon stock using geospatial techniques. Results: The results show that the mangroves in Muthupet region has NDVI values between -0.671 and 0.398 in 2000, -0.93 and 0.621 in 2010 and -0.66 and 0.398 in 2017. The observation indicates the reliability and validity of the aviation remote sensing with high resolution and with near red spectrum experimented in this research for estimating the the Avicennia marina (Forsk.) mangrove growing in this region. The estimated quantity of carbon di oxide sequestrated by the mangrove was about 1475.642 Mg/Ha in 2000, 3646.312 Mg/Ha in 2010 and 1677.72 Mg/Ha in 2017. Conclusion: The capacity of the Avicennia marina growing in Muthupet region to sequestrate carbon show that it has a great potential for development and implementation. The results obtained in this research can be used as a basis for policy makers, conservationists, regional planners, and researchers to deal with future development of cities and their surroundings in regions of highly ecological and environmental sensitivity. Thus the finding shows that wetlands are an important ecological boon as it helps to control the impact of climate change in many different ways.


2021 ◽  
Vol 6 (1) ◽  
pp. 46-56
Author(s):  
Ricky Anak Kemarau ◽  
Oliver Valentine Eboy

The years 1997/1998 and 2015/2016 saw the worst El Niño occurrence in human history. The occurrence of El Niño causes extreme temperature events which are higher than usual, drought and prolonged drought. The incident caused a decline in the ability of plants in carrying out the process of photosynthesis. This causes the carbon dioxide content to be higher than normal. Studies on the effects of El Niño and its degree of strength are still under-studied especially by researchers in the tropics. This study uses remote sensing technology that can provide spatial information. The first step of remote sensing data needs to go through the pre-process before building the NDVI (Normalized Difference Vegetation Index) and Normalized Difference Water Index (NDWI) maps. Next this study will identify the relationship between Oceanic Nino Index (ONI) with Application Remote Sensing in The Study Of El Niño Extreme Effect 1997/1998 and 2015/2016 On Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI)NDWI and NDWI landscape indices. Next will make a comparison, statistical and spatial information space between NDWI and NDVI for each year 1997/1998 and 2015/2016. This study is very important in providing spatial information to those responsible in preparing measures in reducing the impact of El Niño.


Sign in / Sign up

Export Citation Format

Share Document