scholarly journals Portable PCR field-based detection of sweetpotato viruses

1970 ◽  
Vol 28 (3) ◽  
pp. 363-374
Author(s):  
J. Ssengo ◽  
P. Wasswa ◽  
S.B. Mukasa ◽  
A. Okiror ◽  
S. Kyamanywa

Sweetpotato (Ipomoea batatas Lam.) production is greatly constrained by viral infections, especially Sweet potato feathery mottle virus and Sweet potato chlorotic stunt virus that synergistically cause a severe sweetpotato virus disease. The impact of viruses is aggravated by the vegetative nature of the crop and inaccessibility to dependable diagnostic tools in rural areas where sweetpotato production is done. This makes it hard for seed inspectors to perform quality checks prior to use of vines for planting. The objective of this study was to develop a procedure that allows for detection of sweetpotato viruses on-site. This involved modification of the Lodhi et al. (1994) nucleic acid extraction procedure, by omitting some of the laboratory specific steps and varying the incubation time in liquid nitrogen, instead of the freezer. Incubation in liquid nitrogen for only 1.5 hours yielded as high quality RNA compared to that of the original protocol, when incubation was done at 4°C overnight in a freezer. Reverse transcriptase (RT) was run using a portable miniPCR thermocycler; and the resulting cDNA was amplified using this miniPCR machine instead of using a laboratory stationed conventional PCR thermocycler. The cDNA was efficiently amplified and amplicons were similar to those obtained with the original extraction protocol and subsequent amplification by the conventional RT-PCR. Our protocol reduced extraction time from about 16 hours for the original protocol, to about 2 hours and 45 minutes. If this tool is utilised by the crop protection departments, we believe it will contribute greatly towards sustainable sweetpotato production through making timely recommendations.

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 103
Author(s):  
Jin Mark D. G. Pagulayan ◽  
Aprille Suzette V. Mendoza ◽  
Fredelyn S. Gascon ◽  
Jan Carlo C. Aningat ◽  
Abigail S. Rustia ◽  
...  

The study aimed to evaluate the effects of process parameters (time and raw material weight (RMW)) of conventional (boiling for 10–45 min) and microwave-assisted (2–8 min) aqueous extraction on the color quality (i.e., lightness (L*), chroma (C*), and hue (H°) of anthocyanin –based colorants of red and Inubi sweet potato (Ipomoea batatas L.) leaves. Using response surface methodology, it was found that RMW and boiling time (BT) and microwave time (MT) generally had a significant (p < 0.05) effect on the color quality of the extract from both extraction methods. The effects were found to vary depending on the extraction method and variety of the leaves used. Both extraction methods produced a brown to brick-red extract from the Inubi variety that turned red-violet to pink when acidified. The red sweet potato leaves produced a deep violet colored extract that also turned red-violet when acidified. It is recommended that the anthocyanin content of the extracts be measured to validate the impact of the methods on the active agent. Nevertheless, the outcomes in this study may serve as baseline data for further studies on the potential of sweet potato leaf colorants (SPLC) as a colorant with functional properties.


2020 ◽  
Vol 73 (3) ◽  
Author(s):  
Rini Sulistiani ◽  
Rosmayati ◽  
Luthfi A. M. Siregar ◽  
Fauziyah Harahap

The impact of temperature and potassium fertilizers on the growth, yield, and basic biochemical characteristics of sweet potato, <em>Ipomoea batatas </em>var. Antin- 1, was investigated in lowland and highland terrains. In this study we aimed to determine the different traits of the sweet potato, based on its morphology, physiology, and biochemical composition, following treatments with a potassium fertilizer at different temperatures. The study was undertaken using a nested factorial design. The first factor was temperature at each of the two sites: T1 (lowland) and T2 (highland). The second factor was potassium fertilizer (K<sub>2</sub>O) nested within the temperature factor and consisting of four levels of K: K0 (0 kg/ha), K1 (50 kg/ha), K2 (100 kg/ha), and K3 (150 kg/ha). Each potassium treatment was replicated three times at each location. Plant vegetative growth in the lowland region, with a daily average temperature of 26.8 °C, tended to be more bushy, with several different morphological properties: The main stem was longer (160.7 cm) and spreading, the stem diameter was greater, and the petioles were significantly longer in the lowland plants compared with the highland plants; however, no differences were observed in the leaf characteristics. The differential temperature (depending on altitude) resulted in significant differences in relative growth rates (RGR) and net assimilation rates (NAR); the values for RGR-1 and NAR-1 in the lowlands were higher than those in the highlands. The tuber weight, yield index, anthocyanin accumulation, and glucose content were significantly higher in the highland crops than in the lowland plants, which grew under relatively higher temperatures. Potassium applications caused significant differences in the anthocyanin content (mg/100 g fresh weight), anthocyanin production (kg/ha), and glucose production (kg/ha) at different locations.


1979 ◽  
Vol 15 (3) ◽  
pp. 253-256 ◽  
Author(s):  
S. K. Hahn

SUMMARYSweet potato (Ipomoea batatas L.) virus disease (SPVD) causes severe disease symptoms of various combinations of leaf strapping, vein-clearing, puckering and stunting. The disease is widespread, especially in Africa, and yield is adversely affected, though there are no figures to quantify this effect nor is it known how yield is affected. Loss of tuberous root yield due to SPVD was studied in sweet potato showing symptoms of the disease. Slips were obtained from plants with and without symptoms and two yield trials in 2 years were conducted by planting them alternately in rows. Yield of fresh tubers was reduced by 78% in plants showing SPVD symptoms but the reduced chlorophyll level of diseased leaves did not appear to affect yield.


1987 ◽  
Vol 16 (4) ◽  
pp. 178-181 ◽  
Author(s):  
S. C. O. Nwinyi

This article reviews the impact of sweet potato (Ipomoea batatas (L) Lam) on the world economy, its uses, and efforts in Nigeria to popularize its cultivation and acceptability. The potential and average yields of 87 and 20–30 t/ha respectively (over a three–six month growing period) under improved management practices, its ecological flexibility, its low input requirements, the wide range of recipes based on its flour, and easy propagation by vine cuttings distinguish the sweet potato as a potentially important industrial and staple food crop. Problems relating to sweetness, dominant flavour, and the colour of the cooked product are identified as ones requiring solution if its acceptability is to be enhanced.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 510-514 ◽  
Author(s):  
Heidy A. Gamarra ◽  
Segundo Fuentes ◽  
Francisco J. Morales ◽  
Rachel Glover ◽  
Chris Malumphy ◽  
...  

Bemisia tabaci biotype B is considered to be the primary vector of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus). However, Trialeurodes abutiloneus also has been shown to transmit SPCSV in a semipersistent manner. Mixed infection of SPCSV with the aphid-transmitted Sweet potato feathery mottle virus (SPFMV, Potyvirus) causes sweetpotato (Ipomoea batatas) virus disease (SPVD), the major virus disease affecting this crop. High populations of B. afer sensu lato are seasonally associated with sweetpotato in Peru during times of low B. tabaci incidence. The transmission of SPCSV (in single and double infection with SPFMV) by laboratory-reared B. afer sensu lato and B. tabaci biotype B was investigated. For SPCSV transmission efficiency, individual adult insects were allowed 48 h for acquisition and inoculation access periods at both 20 and 25°C. SPCSV was transmitted by both whiteflies, with similar transmission efficiency when the virus was acquired from plants singly infected by SPCSV or doubly infected with SPCSV and SPFMV, at 20 and 25°C. We conclude that B. afer sensu lato is a newly identified vector of SPCSV. This finding may have important epidemiological significance for the spread of SPCSV and SPVD.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 669-676 ◽  
Author(s):  
Milton Untiveros ◽  
Segundo Fuentes ◽  
Luis F. Salazar

Co-infection of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus) with Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) results in sweet potato virus disease (SPVD), a synergistic disease that is widely distributed in the sweet potato (Ipomoea batatas) growing regions of the world. Since both SPCSV and SPFMV are common and often detected as part of multiple co-infections of severely diseased plants, the occurrence of synergistic interactions with other viruses was investigated. Data from this study show that SPCSV, but not SPFMV, can cause synergistic diseases in sweet potato with all viruses tested, including members of the genus Potyvirus (Sweet potato latent virus, Sweet potato mild speckling virus), Ipomovirus (Sweet potato mild mottle virus), Cucumovirus (Cucumber mosaic virus), and putative members of the genus Carlavirus (Sweet potato chlorotic fleck virus and C-6 virus). The synergism was expressed as an increase in the severity of symptoms, virus accumulation, viral movement in plants, and as an effect on yield of storage roots. The presence of a third different virus in plants affected with SPVD increased the severity of symptoms even further compared with SPVD alone. There was a positive correlation between increase in virus accumulation and symptom expression in double and triple SPCSV-associated co-infections. The epidemiological implications of the results are discussed.


2016 ◽  
Vol 31 (1) ◽  
Author(s):  
Massimiliano Bergallo ◽  
Ilaria Galliano ◽  
Elisa Loiacono ◽  
Francesca Ferro ◽  
Paola Montanari ◽  
...  

Background and aim: BK virus, a member of human polyomavirus family, is a worldwide distributed virus characterized by a seroprevalence rate of 70-90% in adult population. Monitoring of viral replication is made by evaluation of BK DNA by quantitative polymerase chain reaction. Many different methods can be applied for extraction of nucleic acid from several specimens. The aim of this study was to assess the impact of two different DNA extraction procedure on BK viral load. <br />Materials and methods: DNA extraction procedure including the Nuclisens easyMAG platform (bioMerieux, Marcy l’Etoile, France) and manual QIAGEN extraction (QIAGEN Hilden, Germany). BK DNA quantification was performed by Real Time TaqMan PCR using a commercial kit. <br />Result and discussion: The samples capacity, cost and time spent were compared for both systems. In conclusion our results demonstrate that automated nucleic acid extraction method using Nuclisense easyMAG was superior to manual protocol (QIAGEN Blood Mini kit), for the extraction of BK virus from serum and urine specimens.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1687-1687 ◽  
Author(s):  
H. P. Trenado ◽  
G. Lozano ◽  
R. A. Valverde ◽  
J. Navas-Castillo

Sweet potato feathery mottle virus (SPFMV), Sweet potato virus G (SPVG), and Sweet potato virus 2 (SPV2) (also known as Ipomoea vein mosaic virus (2) and Sweet potato virus Y) are members of the genus Potyvirus (family Potyviridae), which can synergistically interact with Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus, family Closteroviridae), increasing symptom severity on sweet potato (Ipomoea batatas (L.) Lam.) (1,2,3). During 2002, 2006, and 2007, vine cuttings from sweet potato plants were collected in Malaga (southern Spain), Tenerife, and Lanzarote (Canary Islands, Spain) to be tested for the presence of viruses. Sampled plants ranged from asymptomatic to severely affected by symptoms of sweet potato virus disease (SPVD), caused by dual infection with SPFMV or other potyviruses with SPCSV. Scions collected during 2002 were grafted to the indicator host I. setosa. Foliar samples from I. setosa were used for nitrocellulose membrane (NCM)-ELISA testing with antisera specific to SPVG or SPV2 (provided by C. A. Clark, Louisiana State University) following described procedures (2). NCM-ELISA testing indicated that SPVG was present in samples from Malaga, Tenerife, and Lanzarote, whereas SPV2 was only found in samples from Malaga. Reverse-transcription (RT)-PCR was performed on RNA extracts from sweet potato or I. setosa leaves using primer pairs MA541 (5′-AACAATTCCAGATAGTAGAGGGGTTG-3′)/MA542(5′-TGTGGGGACAGCATGATCCAATAG-3′) and MA540 (5′-AACCCCAACACCAGCAAAATCAGTTAAG-3′)/MA542 corresponding to the capsid protein (CP) genes of SPVG and SPV2, respectively. Thirteen of 47 samples from Malaga and 4 of 30 from the Canary Islands yielded the expected 483-bp DNA fragment with the primers for SPVG. Fifteen of 47 samples from Malaga yielded the expected 627-bp DNA fragment with primers for SPV2. Two RT-PCR amplicons of SPVG, one from Malaga and one from Tenerife, were sequenced. Their nucleotide sequences (GenBank Accession Nos. EF577438 and EF577439, respectively) showed 98% identity to SPVG isolates from Louisiana (2) and China. Sequencing of one RT-PCR amplicon of SPV2 from Malaga resulted in a nucleotide sequence (GenBank Accession No. EF577437) with 99% identity to SPV2 from Lousiana and Australia (3). The presence of SPVG and SPV2 increases the already existing risk of SPVD, since the main viruses involved in the synergism, SPFMV and SPCSV, are present in Spain (4). SPCSV was also detected in some of the plants infected with SPVG or SPV2, in some cases, in coinfection with SPFMV. References: (1) C. D. Kokkinos and C. A. Clark. Plant Dis. 90:1347, 2006. (2) E. R. Souto et al. Plant Dis. 87:1226, 2003. (3) F. Tairo et al. Plant Dis. 90:1120, 2006. (4) R. A. Valverde et al. Plant Dis. 88:428, 2004.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 517D-517
Author(s):  
K.S. Ling ◽  
C.A. Clark ◽  
C. Kokkinos ◽  
J. R. Bohac ◽  
S.S. Hurtt ◽  
...  

Sweet potato virus disease (SPVD) is the most devastating virus disease on sweetpotato [Ipomoea batatas (L.) Lam] world wide, especially in East Africa. However, weather it is present in the U.S. is unknown. SPVD is caused by co-infection of sweetpotato feathery mottle virus (SPFMV) and sweetpotato chlorotic stunt virus (SPCSV). Presence of two other potyviruses, sweetpotato virus G (SPVG) and Ipomoea vein mosaic virus (IVMV) has also been confirmed in the U.S. Sweet potato leaf curl virus (SPLCV), a whitefly (Bemisia tabaci) transmitted Begomovirus, also has the potential to spread to commercial sweetpotato fields and poses a great threat to the sweetpotato industry. The U.S. collection of sweetpotato germplasm contains about 700 genotypes or breeding lines introduced from over 20 different countries. Newly introduced sweetpotato germplasm from foreign sources are routinely screened for major viruses with serology and graft-transmission onto indicator plants (Ipomoea setosa). However, a large portion of this collection including heirloom cultivars or old breeding materials has not been systemically screened for these major sweetpotato viruses. In this study, a total of 69 so-called heirloom sweetpotato PI accessions were evaluated for their virus status. We used Real-time PCR to detect five sweetpotato viruses, including four RNA viruses (SPCSV, SPFMV, SPVG, and IVMV) and one DNA virus (SPLCV). A multiplex Real-time RT-PCR system was developed to detect three RNA viruses (SPFMV, SPVG, and IVMV). Preliminary data indicated that about 15% of these heirloom sweetpotato germplasm carried at least one of these viruses tested. Details on virus infection status will be presented.


Sign in / Sign up

Export Citation Format

Share Document