Cussonia arborea Hochst (Araliaceae): Ethnobotany, Pharmacology and Phytochemistry

2021 ◽  
Vol 14 (2) ◽  
pp. 6-10
Author(s):  
Modjinan Kayangar ◽  
N. Raymond Nono ◽  
T. Romuald Fouedjou ◽  
T. Billy Tchegnitegni ◽  
K. Beaudelaire Ponou ◽  
...  

Background:  C. arborea belonging to Araliaceae family is used traditionally to cure many alien diseases including gonorrhoeae infection, diarrhea, malaria, and diabetes mellitus. The plant has been examined on the basis of scientific in vitro and in vivo evaluations possessing the major pharmacological activities including antimicrobial, antibacterial, antihyperglycemic,  antiplasmodial and anticancer properties. Aim of the study: In the present paper, we reported the isolation and characterization of secondary metabolites from the methanol extract of the stem bark of Cussonia arborea Hochst after a short review of the traditional and pharmacological studies done on this important medicinal plant. Materials and methods: MeOH extract of stem bark of C. arborea was suspended in water and successively extracted with EtOAc and n-BuOH. The EtOAc extract (18 g) was subjected to repeated column chromatography to yield seven (1-7) compounds. Their structures were determined by means of NMR, and published data. Results: The isolated compounds were identified as: protocatechuic acid (1), mixture of 3,23-dihydroxyolean-12-en-28-oic acid (2a) and 3,23-dihydroxyurs-12-en-28-oic acid (2b) in ratio 5/4, 3-O-β-D-xylopyranosylolean-12-en-28-oic acid (3), 3-O-α-L-arabinopyranosylolean-12-en-28-oic acid (4), β-resorcylic acid (5), mixture of 3-O-β-D-glucopyranosyl-23-hydroxyolean-12-en-28-oic acid (6a) and 3-O-β-D-glucopyranosyl-23-hydroxyurs-12-en-28-oic acid (6b) in ration 4/1, 3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranosyl-3β-hydroxyolean-12-en-28-oic acid (7). Compounds 3, 4, 5, 7, 2b and 6b are herein reported for the first time in this plant

2013 ◽  
Vol 8 (11) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Harish C. Upadhyay ◽  
Brijesh S. Sisodia ◽  
Harveer S. Cheema ◽  
Jyoti Agrawal ◽  
Anirban Pal ◽  
...  

The roots, leaves and stems of Christia vespertilionis were separately and successively extracted with methanol and aqueous-methanol (1:4, v/v) and were evaluated in vitro for their antiplasmodial potential against Plasmodium falciparum NF-54. The aqueous-methanolic stem (AS) extract was the most active (IC50 7.5 μg/mL) followed by the methanolic leaf (ML) extract (IC50 32.0 μg/mL). The in vivo antimalarial activity of the combined plant extract of C. vespertilionis was also assessed in P. berghei infected mice, which showed 87.8% suppression of parasitaemia as compared with complete suppression by chloroquine on day 8. Finally, detailed chemical investigation of C. vespertilionis resulted in the isolation and characterization of fifteen compounds (1–15), of which two (1 and 4) are being reported for the first time from nature. The novel compound 1 possesses potent antiplasmodial activity (IC50 = 9.0 μg/mL).


1993 ◽  
Vol 121 (3) ◽  
pp. 513-519 ◽  
Author(s):  
W Jiang ◽  
J Lechner ◽  
J Carbon

We have cloned and determined the nucleotide sequence of the gene (CBF2) specifying the large (110 kD) subunit of the 240-kD multisubunit yeast centromere binding factor CBF3, which binds selectively in vitro to yeast centromere DNA and contains a minus end-directed microtubule motor activity. The deduced amino acid sequence of CBF2p shows no sequence homologies with known molecular motors, although a consensus nucleotide binding site is present. The CBF2 gene is essential for viability of yeast and is identical to NDC10, in which a conditional mutation leads to a defect in chromosome segregation (Goh, P.-Y., and J. V. Kilmartin, in this issue of The Journal of Cell Biology). The combined in vitro and in vivo evidence indicate that CBF2p is a key component of the budding yeast kinetochore.


2018 ◽  
Vol 115 (51) ◽  
pp. 12997-13002 ◽  
Author(s):  
Charlotte Steenblock ◽  
Maria F. Rubin de Celis ◽  
Luis F. Delgadillo Silva ◽  
Verena Pawolski ◽  
Ana Brennand ◽  
...  

The adrenal gland is a master regulator of the human body during response to stress. This organ shows constant replacement of senescent cells by newly differentiated cells. A high degree of plasticity is critical to sustain homeostasis under different physiological demands. This is achieved in part through proliferation and differentiation of adult adrenal progenitors. Here, we report the isolation and characterization of a Nestin+ population of adrenocortical progenitors located under the adrenal capsule and scattered throughout the cortex. These cells are interconnected with progenitors in the medulla. In vivo lineage tracing revealed that, under basal conditions, this population is noncommitted and slowly migrates centripetally. Under stress, this migration is greatly enhanced, and the cells differentiate into steroidogenic cells. Nestin+ cells cultured in vitro also show multipotency, as they differentiate into mineralocorticoid and glucocorticoid-producing cells, which can be further influenced by the exposure to Angiotensin II, adrenocorticotropic hormone, and the agonist of luteinizing hormone-releasing hormone, triptorelin. Taken together, Nestin+ cells in the adult adrenal cortex exhibit the features of adrenocortical progenitor cells. Our study provides evidence for a role of Nestin+ cells in organ homeostasis and emphasizes their role under stress. This cell population might be a potential source of cell replacement for the treatment of adrenal insufficiency.


2005 ◽  
Vol 391 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renu Wadhwa ◽  
Syuichi Takano ◽  
Kamaljit Kaur ◽  
Satoshi Aida ◽  
Tomoko Yaguchi ◽  
...  

Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.


2010 ◽  
Vol 46 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Daiane Hansen ◽  
Mitsue Haraguchi ◽  
Antonio Alonso

The plant of the genus Pterodon (Fabaceae, Leguminosae), commonly known as 'sucupira' or 'faveira', are disseminated throughout the central region of Brazil and has frequently been used in popular medicine for its anti-rheumatic, analgesic, and anti-inflammatory properties. In recent years, interest in these plants has increased considerably. The biological effects of different phytoextracts and pure metabolites have been investigated in several experimental models in vivo and in vitro. The literature describes flavonoids, triterpene and steroids, while one paper presented studies with proteins isolated from the genus. This review provides an overview of phytochemical and pharmacological research in Pterodon, showing the main chemical compounds studied to date, and focusing on the relationship between these molecules and their biological activity. Furthermore, this study paves the way for more in-depth investigation, isolation and characterization of the molecules of this plant genus.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sandra Quilodrán-Vega ◽  
Leonardo Albarracin ◽  
Flavia Mansilla ◽  
Lorena Arce ◽  
Binghui Zhou ◽  
...  

Potential probiotic or immunobiotic effects of lactic acid bacteria (LAB) isolated from the milk of the South American camelid llama (Lama glama) have not been reported in published studies. The aim of the present work was to isolate beneficial LAB from llama milk that can be used as potential probiotics active against bacterial pathogens. LAB strains were isolated from llama milk samples. In vitro functional characterization of the strains was performed by evaluating the resistance against gastrointestinal conditions and inhibition of the pathogen growth. Additionally, the adhesive and immunomodulatory properties of the strains were assessed. The functional studies were complemented with a comparative genomic evaluation and in vivo studies in mice. Ligilactobacillus salivarius TUCO-L2 showed enhanced probiotic/immunobiotic potential compared to that of other tested strains. The TUCO-L2 strain was resistant to pH and high bile salt concentrations and demonstrated antimicrobial activity against Gram-negative intestinal pathogens and adhesion to mucins and epithelial cells. L. salivarius TUCO-L2 modulated the innate immune response triggered by Toll-like receptor (TLR)-4 activation in intestinal epithelial cells. This effect involved differential regulation of the expression of inflammatory cytokines and chemokines mediated by the modulation of the negative regulators of the TLR signaling pathway. Moreover, the TUCO-L2 strain enhanced the resistance of mice to Salmonella infection. This is the first report on the isolation and characterization of a potential probiotic/immunobiotic strain from llama milk. The in vitro, in vivo, and in silico investigation performed in this study reveals several research directions that are needed to characterize the TUCO-L2 strain in detail to position this strain as a probiotic or immunobiotic that can be used against infections in humans or animals, including llama.


2010 ◽  
Vol 38 (06) ◽  
pp. 1107-1114 ◽  
Author(s):  
Shougang Jiang ◽  
Yu Zhang ◽  
Yuangang Zu ◽  
Zhuo Wang ◽  
Yujie Fu

Water decoctions from the leaves of Taxus cuspidata are used in traditional Chinese medicine to treat cancer, suggesting that water soluble constituents from these leaves may possess anticancer properties. Interestingly, hydrophilic paclitaxel derivatives, as opposed to paclitaxel itself, can be detected by high pressure liquid chromatography in water decoctions from these leaves. The remainder extracts, which are free of paclitaxel and hydrophilic paclitaxel derivatives, from the T. cuspidata leaves were investigated for antitumor activity in vivo and in vitro for the first time in this study. EE80B, 7-xylosyl-10-deacetylpaclitaxel and 7-xylosyl-10-deacetylpaclitaxel C displayed the most antitumor activity in vivo. However, in vitro studies with tumor cell lines showed that EE80B had a significantly smaller antitumor effect than paclitaxel. We hypothesize that water decoctions from T. cuspidata leaves exhibit antitumor effects in vivo, which may be aided by the activation of specific host mechanisms (e.g. stimulation of antitumor immunity) which are not present in vitro.


1993 ◽  
Vol 122 (3) ◽  
pp. 623-633 ◽  
Author(s):  
TE Morgan ◽  
RO Lockerbie ◽  
LS Minamide ◽  
MD Browning ◽  
JR Bamburg

Actin depolymerizing factor (ADF) is an 18.5-kD protein with pH-dependent reciprocal F-actin binding and severing/depolymerizing activities. We previously showed developing muscle down-regulates ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 105: 2817-2825). To further study this process, we examined ADF expression in chick myocytes cultured in vitro. Surprisingly, ADF immunoreactivity increases during the first 7-10 d in culture. This increase is due to the presence of a new ADF species with higher relative molecular weight which reacts identically to brain ADF with antisera raised against either brain ADF or recombinant ADF. We have purified both ADF isoforms from myocytes and have shown by peptide mapping and partial sequence analysis that the new isoform is structurally related to ADF. Immunoprecipitation of both isoforms from extracts of cells prelabeled with [32P]orthophosphate showed that the new isoform is radiolabeled, predominantly on a serine residue, and hence is called pADF. pADF can be converted into a form which comigrates with ADF on 1-D and 2-D gels by treatment with alkaline phosphatase. pADF has been quantified in a number of cells and tissues where it is present from approximately 18% to 150% of the amount of unphosphorylated ADF. pADF, unlike ADF, does not bind to G-actin, or affect the rate or extent of actin assembly. Four ubiquitous protein kinases failed to phosphorylate ADF in vitro suggesting that ADF phosphorylation in vivo is catalyzed by a more specific kinase. We conclude that the ability to regulate ADF activity is important to muscle development since myocytes have both pre- and posttranslational mechanisms for regulating ADF activity. The latter mechanism is apparently a general one for cell regulation of ADF activity.


Blood ◽  
2017 ◽  
Vol 129 (10) ◽  
pp. 1284-1295 ◽  
Author(s):  
Lorenz Jahn ◽  
Pleun Hombrink ◽  
Renate S. Hagedoorn ◽  
Michel G. D. Kester ◽  
Dirk M. van der Steen ◽  
...  

Key Points Isolation and characterization of a high-affinity TCR targeting the intracellular B cell–specific transcription factor BOB1. T cells expressing a BOB1-specific TCR lysed and eradicated primary multiple myeloma and other B-cell malignancies in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document