scholarly journals Socio-ecological impacts of water hyacinth, Eichhornia crassipes (MART.) in Lake Tana, Gulf of Gorgora, Ethiopia

2021 ◽  
Vol 24 (12) ◽  
pp. 2017-2025
Author(s):  
Flipos Endgaw

Water hyacinth is one of the aggressive alien aquatic macrophyte threatening biodiversity, economic development and human wellbeing. Currently, the macrophyte has invaded Lake Tana and its catchment causing several socio-ecological impacts. So far, there is limited information on socio-ecological impact of water hyacinth in Lake Tana specifically gulf of Gorgora. Therefore, the main aim of this study was to assess socio-ecological impact of water hyacinth in Lake Tana gulf of Gorgora, located in North West of Ethiopia from November 2019 to January 2020. Two sampling sites (infested and non-infested) were identified based on infestation of water hyacinth. A total of 30 water and 12 water hyacinth samples were collected with a survey of 50 individuals. Results revealed that water quality, phytoplankton diversity, fishing, navigation, health condition of local people, recreational and aesthetic value were impacted negatively due to infestation. Conversely, higher accumulation of toxic heavy metals and dissolved metallic ions in the root, stem and leaf of the macrophyte impacted positively. Infestation of the macrophyte significantly affected water quality and species diversity of Lake Tana. In the infested site; DO (3.3 to 4.5), SRP (0.012 to 0.023 mg L-1), TP (0.24 to 0.28 mg L- 1), NO3-N (0.74 to 0.97 mg L-1) and TN (2.1 to 3.2 mg L-1) were significantly (p < 0.01) lower than non-infested site. Generally, infestation of water hyacinth negatively impacted the society and the ecology in Lake Tana catchment. Therefore, continuous monitoring and management of the macrophyte is required.

2018 ◽  
Vol 20 (9) ◽  
pp. 2517-2534 ◽  
Author(s):  
Ayenew Gezie ◽  
Workiyie Worie Assefa ◽  
Belachew Getnet ◽  
Wassie Anteneh ◽  
Eshete Dejen ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 374-385
Author(s):  
C. E. Marcillo ◽  
G. García Prado ◽  
N. Copeland ◽  
L. H. Krometis

Abstract Limited information is available describing point-of-use (POU) water quality in rural Guatemala. Source water quality in eastern Guatemala is of concern given underlying volcanic geology that can leach arsenic and the presence of large-scale mining, which can potentially exacerbate exposure. On-premise piped POU water in the rural community of San Rafael las Flores was sampled in 31 households to characterize a suite of metallic ions and E. coli, along with a survey of water uses and perceptions. Samples were analyzed via standard laboratory methods in the United States and an arsenic quick kit in the field. Fourteen household samples contained arsenic &gt;9 μg/L and 13% of households exceeded at least one Guatemalan and US health-based water quality standard. Survey results revealed widespread dissatisfaction with water quality and service: most participants did not drink their POU water, fearing illness, and instead purchased bottled water or collected from untreated springs. Ideally, establishment of baseline water quality and an understanding of local concerns will facilitate collaborative partnerships and interventions that build community trust in appropriate water infrastructure while identifying surrounding land use impacts. This work represents the first Guatemalan study that quantifies POU contamination while concurrently examining user perceptions, preferences, and concerns.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
E. Hanggari Sittadewi

Environment degradation in Rawa Pening’s lake is caused of descend lake’s functions for some potentions and activities around the lake. Some problems in the Rawa Pening’s lake has emerged i.e : decrease water quality of lake, abundance of water hyacinth growth and increase sediment in the bottom lake. A research about infl uences of land ecosystem on Panjang and Galeh river corridors for Rawa Pening’s lake has been done. Two rivers named Galeh and Panjang are the largest water contribution in Rawa Pening’s lake. That caused the land characteristic ecosystem of that river corridors gives infl uences in the Rawa Pening’s lake.Key words: land ecosystem, river corridor, water contribution, Rawa Pening Lake.


2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Leo Posthuma ◽  
Werner Brack ◽  
Jos van Gils ◽  
Andreas Focks ◽  
Christin Müller ◽  
...  

Abstract The ecological status of European surface waters may be affected by multiple stressors including exposure to chemical mixtures. Currently, two different approaches are used separately to inform water quality management: the diagnosis of the deterioration of aquatic ecosystems caused by nutrient loads and habitat quality, and assessment of chemical pollution based on a small set of chemicals. As integrated assessments would improve the basis for sound water quality management, it is recommended to apply a holistic approach to integrated water quality status assessment and management. This allows for estimating the relative contributions of exposure to mixtures of the chemicals present and of other stressors to impaired ecological status of European water bodies. Improved component- and effect-based methods for chemicals are available to support this. By applying those methods, it was shown that a holistic diagnostic approach is feasible, and that chemical pollution acts as a limiting factor for the ecological status of European surface waters. In a case study on Dutch surface waters, the impact on ecological status could be traced back to chemical pollution affecting individual species. The results are also useful as calibration of the outcomes of component-based mixture assessment (risk quotients or mixture toxic pressures) on ecological impacts. These novel findings provide a basis for a causal and integrated analysis of water quality and improved methods for the identification of the most important stressor groups, including chemical mixtures, to support integrated knowledge-guided management decisions on water quality.


2021 ◽  
Vol 13 (16) ◽  
pp. 8710
Author(s):  
Yuchao Zhang ◽  
Steven Loiselle ◽  
Yimo Zhang ◽  
Qian Wang ◽  
Xia Sun ◽  
...  

The largest blue-green infrastructures in industrialized, urbanized and developed regions in China are often multiuse wetlands, located just outside growing urban centers. These areas have multiple development pressures while providing environmental, economic, and social benefits to the local and regional populations. Given the limited information available about the tradeoffs in ecosystem services with respect to competing wetland uses, wetland managers and provincial decision makers face challenges in regulating the use of these important landscapes. In the present study, measurements made by citizen scientists were used to support a comparative study of water quality and wetland functions in two large multiuse wetlands, comparing areas of natural wetland vegetation, tourism-based wetland management and wetland agriculture. The study sites, the Nansha and Tianfu wetlands, are located in two of the most urbanized areas of China: the lower Yangtze River and Pearl River catchments, respectively. Our results indicated that the capacity of wetlands to mitigate water quality is closely related to the quality of the surrounding waters and hydrological conditions. Agricultural areas in both wetlands provided the lowest sediment and nutrient retention. The results show that the delivery of supporting ecosystem services is strongly influenced by the location and use of the wetland. Furthermore, we show that citizen scientist-acquired data can provide fundamental information on quantifying these ecosystem services, providing needed information to wetland park managers and provincial wetland administrators.


2012 ◽  
Vol 63 (9) ◽  
pp. 788 ◽  
Author(s):  
N. E. Pettit ◽  
T. D. Jardine ◽  
S. K. Hamilton ◽  
V. Sinnamon ◽  
D. Valdez ◽  
...  

The present study indicates the critical role of hydrologic connectivity in floodplain waterholes in the wet–dry tropics of northern Australia. These waterbodies provide dry-season refugia for plants and animals, are a hotspot of productivity, and are a critical part in the subsistence economy of many remote Aboriginal communities. We examined seasonal changes in water quality and aquatic plant cover of floodplain waterholes, and related changes to variation of waterhole depth and visitation by livestock. The waterholes showed declining water quality through the dry season, which was exacerbated by more frequent cattle usage as conditions became progressively drier, which also increased turbidity and nutrient concentrations. Aquatic macrophyte biomass was highest in the early dry season, and declined as the dry season progressed. Remaining macrophytes were flushed out by the first wet-season flows, although they quickly re-establish later during the wet season. Waterholes of greater depth were more resistant to the effects of cattle disturbance, and seasonal flushing of the waterholes with wet-season flooding homogenised the water quality and increased plant cover of previously disparate waterholes. Therefore, maintaining high levels of connectivity between the river and its floodplain is vital for the persistence of these waterholes.


2003 ◽  
Vol 60 (2) ◽  
pp. 381-392 ◽  
Author(s):  
C Hauton ◽  
J.M Hall-Spencer ◽  
P.G Moore

AbstractA short-term experiment to assess the ecological impact of a hydraulic blade dredge on a maerl community was carried out during November 2001 in the Clyde Sea area on the west coast of Scotland. A fluorescent sediment tracer was used to label dead maerl, which was then spread out on the surface of sediment to act as a proxy for living maerl. The fauna collected by the dredge was dominated by the bivalves Dosinia exoleta and Tapes rhomboides, which were found to be intact. The target razor clams Ensis spp. were caught in low numbers, which reflected the low abundance of this genus within the maerl habitat. The hydraulic dredge removed, dispersed and buried the fluorescent maerl at a rate of 5.2 kg m−2 and suspended a large cloud of sediment into the water column, which settled out and blanketed the seabed to a distance of at least 8 m either side of the dredge track. The likely ecological consequences of hydraulic dredging on maerl grounds are discussed, and a case is made for protecting all maerl grounds from hydraulic dredging and establishing them as reservoirs to allow for the recruitment of commercial bivalve populations at adjacent fished sites.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5983
Author(s):  
Aaron E. Brown ◽  
Jessica M. M. Adams ◽  
Oliver R. Grasham ◽  
Miller Alonso Camargo-Valero ◽  
Andrew B. Ross

Water hyacinth (WH) is an invasive aquatic macrophyte that dominates freshwater bodies across the world. However, due to its rapid growth rate and wide-spread global presence, WH could offer great potential as a biomass feedstock, including for bioenergy generation. This study compares different integration strategies of hydrothermal carbonisation (HTC) and anaerobic digestion (AD) using WH, across a range of temperatures. These include (i) hydrochar combustion and process water digestion, (ii) hydrochar digestion, (iii) slurry digestion. HTC reactions were conducted at 150 °C, 200 °C, and 250 °C. Separation of hydrochars for combustion and process waters for digestion offers the most energetically-feasible valorisation route. However, hydrochars produced from WH display slagging and fouling tendencies; limiting their use in large-scale combustion. AD of WH slurry produced at 150 °C appears to be energetically-feasible and has the potential to also be a viable integration strategy between HTC and AD, using WH.


Sign in / Sign up

Export Citation Format

Share Document