scholarly journals Strength Characteristics of M40 Grade Concrete using Waste PET as Replacement for Sand

2021 ◽  
Vol 18 (3) ◽  
pp. 209-218
Author(s):  
S.O.A. Olawale ◽  
M.A. Kareem ◽  
O.Y. Ojo ◽  
A.U. Adebanjo ◽  
M.O. Thanni

The wide variety of industrial and domestic applications of plastic products has fuelled a global trend in their use. The vast amount of plastic items that are discarded after use, on the other hand, pollutes the environment. In light of this, the current study  investigated the use of Polyethylene Terephthalate (PET) as substitute for natural sand in concrete production. Locally sourced river sand was replaced with industrially ground waste PET in proportions of 4 to 20% at a step of 4% by the weight of natural sand whereas other concrete constituents (cement, granite, water-cement ratio and superplasticizer) were kept constant. A Grade M40 concrete with a mix proportion of 1:1:2:0.35 (cement: sand: granite: water-to-cement ratio) was used for all concrete mixes.  Concrete without PET represents the control. Fresh (Slump) and hardened (compressive, split tensile and flexural) properties of the produced concrete were assessed using standard testing methods. The results showed that the slump of concrete decreased by 1.8% and 12.5% with an increase in PET content from 0 to 20%. The 28-day compressive strength of concrete containing PET was lower than the control. However, concrete with 4% PET compared considerably well with control with the compressive strength value exceeding the target strength of 40 N/mm2 while concretes containing PET beyond 4% had compressive strength below the target strength. The split tensile strength of concrete containing 4% PET was higher than that of the control but exhibited lower flexural strength than the control at the age of 28 days. It was concluded that the reuse of PET as a substitute for natural sand as an alternative waste disposal solution for eco-friendly concrete development and attainment of a pollution-free environment is viable.

Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Haitao Zhao ◽  
Qi Xiao ◽  
Donghui Huang ◽  
Shiping Zhang

This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


2017 ◽  
Vol 864 ◽  
pp. 278-283 ◽  
Author(s):  
Saffuan Wan Ahmad ◽  
Khairunisa Muthusamy ◽  
Hanafi Hashim ◽  
Maizatil Akma Yaacob

The growing construction industry that demands for more natural sand supply has indirectly causes the escalation of river sand mining activity. Excessive sand mining affects the water quality and habitats of aquatic life. At the same time, the continuous dumping of palm oil fuel ash, a by-product of oil palm mill causes pollution to the environment. In order to preserve the natural sand and reduce amount of palm oil fuel ash disposed as waste, the present study investigates the potential use of palm oil fuel ash in concrete production. Thus, the effect of unground palm oil fuel ash as partial sand replacement towards workability and compressive strength of concrete is discussed in this paper. A total of six mixes were used in this experimental work. Plain concrete containing 100% river sand was used as reference specimen. The rest of the mixes were prepared by integrating unground palm oil fuel ash by 2%, 4%, 6%, 8% and 10% by weight of sand. All specimens were prepared in form of cubes and subjected to water curing until the testing age. Slump test were conducted on the fresh mix to determine the concrete workability. Compressive strength test were conducted at 7, 14 and 28 days. The finding shows that addition of unground palm oil fuel ash up to 8% does not have significant effect on concrete workability. In terms of compressive strength, inclusion of 6% unground palm oil fuel ash increases the strength of concrete by approximately 13%.


Author(s):  
S. N. Manjunath ◽  
D. Mohammed Rafi ◽  
A. B. S. Dadapeer

Concrete is the most widely used composite construction material. Fine aggregate plays a very important role for imparting better properties to concrete in its fresh and hardened state. Generally, river sand was used as fine aggregate for construction. Due to the continuous mining of sand from riverbed led to the depletion of river sand and it became a scarce material. Also, sand mining from river bed caused a lot of environmental issues. As a substitute to river sand, Robo sand has been used. In this present experimental study a comparative study has been carried out to check the usability of Robo sand in place of natural sand. This study involves determination of some major properties of concrete like compressive strength, split tensile strength, flexural tensile strength and durability in acidic medium made of both the sands. Based on proposed studies, quality of Robo sand is equivalent to natural sand in many respects, such as cleanliness, grading, strength, angularity, specific gravity. Conclusion have been arrived that Robo sand produced from VSI (vertical shaft impact or) is a suitable and viable substitute to river sand and could be effectively used in making concrete which provides adequate strength and durability for the concrete. In the design of concrete structures, concrete is taken into account by taking its compressive strength value. The compressive strength of the concrete made of Robo sand is observed to be very nearer to the strength of the concrete made of natural sand in the present investigation, there by 100% replacement is reasonable.


Author(s):  
Agboola Shamsudeen Abdulazeez ◽  
Amina Omolola Suleiman ◽  
Simdima Gabriel Gideon ◽  
Solomon Wutong Poki

- Presently researches all over the world is concentrating on alternative materials as partial cement replacement in concrete production. The use of pozzolanic material in concrete is becoming increasingly important because of the need for more sustainable cementing products. Volcanic ash is a form of natural pozzolan and has a chemical composition comparable to other supplementary cementitious materials. In this paper, volcanic ash was used to partially replace cement in the ratio of 0%, 5%, 10%, 15% and 20% by volume in concrete and cured in H2SO4 and MgSO4 environment. 28-day target strength was adopted and concrete tested at 7, 14, 28 and 56 days’ hydration period. Specific gravity, bulk density and setting time test on volcanic ash were carried out. Fresh concrete tests such as slump and compacting factor test were carried out along-side hardened concrete tests like compressive strength and split tensile strength. The result shows that the maximum compressive strength at 28 days was at 0% control concrete, while at 56 days the maximum strength was observed at 10% replacement of cement with volcanic ash and it is considered as optimum percentage replacement.


2014 ◽  
Vol 2 (1) ◽  
pp. 75-82
Author(s):  
Elivs M. Mbadike ◽  
N.N Osadebe

In this research work, the effect of mound soil on concrete produced with river sand was investigated. A mixed proportion of 1.1.8:3.7 with water cement ratio of 0.47 were used. The percentage replacement of river sand with mound soil is 0%, 5%, 10%, 20%, 30% and 40%. Concrete cubes of 150mm x 150mm x150mm of river sand/mound soil were cast and cured at 3, 7, 28, 60 and 90 days respectively. At the end of each hydration period, the three cubes for each hydration period were crushed and their average compressive strength recorded. A total of ninety (90) concrete cubes were cast. The result of the compressive strength test for 5- 40% replacement of river sand with mound soil ranges from 24.00 -42.58N/mm2 a against 23.29-36.08N/mm2 for the control test (0% replacement).The workability of concrete produced with 5- 40% replacement of river sand with mound soil ranges from 47- 62mm as against 70mm for the control test.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2020 ◽  
Vol 18 (5) ◽  
pp. 1053-1061
Author(s):  
Uchechi G. Eziefula ◽  
Hyginus E. Opara ◽  
Bennett I. Eziefula

Purpose This paper aims to investigate the 28-day compressive strength of concrete produced with aggregates from different sources. Design/methodology/approach Coarse aggregates were crushed granite and natural local stones mined from Umunneochi, Lokpa and Uturu, Isuakwato, respectively, in Abia State, Nigeria. Fine aggregate (river sand) and another coarse aggregate (river stone) were dredged from Otammiri River in Owerri, Imo State, Nigeria. The nominal mix ratios were 1:1:2, 1:2:4 and 1:3:6, whereas the respective water–cement ratios were 0.45, 0.5, 0.55 and 0.6. Findings The compressive strength of granite concrete, river stone concrete and local stone concrete ranged 17.79-38.13, 15.37-34.57 and 14.17-31.96 N/mm2, respectively. Compressive strength was found to increase with decreasing water–cement ratio and increasing cement content. Practical implications Granite concrete should be used in reinforced-concrete construction, especially when a cube compressive strength of 30 N/mm2 or higher is required. Originality/value Granite concrete exceeded the target compressive strength for all the concrete specimens, whereas river stone concrete and local stone concrete failed to achieve the target strength for some mix proportions and water–cement ratios.


Sign in / Sign up

Export Citation Format

Share Document